Publikation: POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This diploma thesis is focused on the application of a POD based inexact SQP method to an optimal control problem governed by a semilinear heat equation. The theoretical foundation for the solution theory of the optimal control problem is laid by discussing the unique solvability of the state equation, investigating the existence of an optimal solution and deriving necessary optimality conditions utilizing the Lagrange technique. Due to the nonlinearity, the discussion of second order sufficient optimality criteria is needed. The numerical solution of the optimal control problem is realized by an inexact SQP method. To illustrate the presented SQP strategy, numerical test examples are carried out and discussed in detail. A POD based model reduction is applied and persues the aim to decrease computational complexity of the high-dimensional FE systems while providing solutions of good accuracy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRÄSSLE, Carmen, 2014. POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation [Master thesis]. Konstanz: Univ.BibTex
@mastersthesis{Grale2014based-29390, year={2014}, title={POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation}, address={Konstanz}, school={Univ.}, author={Gräßle, Carmen}, note={Diplomarbeit} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29390"> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Gräßle, Carmen</dc:contributor> <dcterms:title>POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29390/3/Graessle_0-265093.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-12-05T08:00:31Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Gräßle, Carmen</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29390/3/Graessle_0-265093.pdf"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29390"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-12-05T08:00:31Z</dcterms:available> <dcterms:abstract xml:lang="eng">This diploma thesis is focused on the application of a POD based inexact SQP method to an optimal control problem governed by a semilinear heat equation. The theoretical foundation for the solution theory of the optimal control problem is laid by discussing the unique solvability of the state equation, investigating the existence of an optimal solution and deriving necessary optimality conditions utilizing the Lagrange technique. Due to the nonlinearity, the discussion of second order sufficient optimality criteria is needed. The numerical solution of the optimal control problem is realized by an inexact SQP method. To illustrate the presented SQP strategy, numerical test examples are carried out and discussed in detail. A POD based model reduction is applied and persues the aim to decrease computational complexity of the high-dimensional FE systems while providing solutions of good accuracy.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>