Publikation: A Note on the Decidability of the Necessity of Axioms
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
A typical kind of question in mathematical logic is that for the necessity of a certain axiom: Given a proof of some statement $\phi$ in some axiomatic system $T$, one looks for minimal subsystems of $T$ that allow deriving $\phi$. In particular, one asks whether, given some system $T+\psi$, $T$ alone suffices to prove $\phi$. We show that this problem is undecidable unless $T+\neg\psi$ is decidable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Mathematics, Logic
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CARL, Merlin, 2014. A Note on the Decidability of the Necessity of AxiomsBibTex
@unpublished{Carl2014Decid-29876, year={2014}, title={A Note on the Decidability of the Necessity of Axioms}, author={Carl, Merlin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29876"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Carl, Merlin</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>A Note on the Decidability of the Necessity of Axioms</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29876"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-19T08:09:44Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Carl, Merlin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-19T08:09:44Z</dcterms:available> <dcterms:abstract xml:lang="eng">A typical kind of question in mathematical logic is that for the necessity of a certain axiom: Given a proof of some statement $\phi$ in some axiomatic system $T$, one looks for minimal subsystems of $T$ that allow deriving $\phi$. In particular, one asks whether, given some system $T+\psi$, $T$ alone suffices to prove $\phi$. We show that this problem is undecidable unless $T+\neg\psi$ is decidable.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja