Publikation:

Analyzing Semantic Concept Patterns to Detect Academic Plagiarism

Lade...
Vorschaubild

Dateien

Meuschke_2-1q1kt47jsgza32.pdf
Meuschke_2-1q1kt47jsgza32.pdfGröße: 339.94 KBDownloads: 510

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 6th International Workshop on Mining Scientific Publications - WOSP 2017. New York, USA: ACM Press, 2017, pp. 46-53. ISBN 978-1-4503-5388-5. Available under: doi: 10.1145/3127526.3127535

Zusammenfassung

Detecting academic plagiarism is a pressing problem, e.g., for educational and research institutions, funding agencies, and academic publishers. Existing plagiarism detection systems reliably identify copied text, or near copies of text, but often fail to detect disguised forms of academic plagiarism, such as paraphrases, translations, and idea plagiarism. We present Semantic Concept Pattern Analysis - an approach that performs an integrated analysis of semantic text relatedness and structural text similarity. Using 25 officially retracted academic plagiarism cases, we demonstrate that our approach can detect plagiarism that established text matching approaches would not identify. We view our approach as a promising addition to improve the detection capabilities for strong paraphrases. We plan to further improve Semantic Concept Pattern Analysis and include the approach as part of an integrated detection process that analyzes heterogeneous similarity features to better identify the many possible forms of plagiarism in academic documents.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Plagiarism Detection, Explicit Semantic Analysis

Konferenz

6th International Workshop on Mining Scientific Publications WSOP 2017, 15. Dez. 2017 - 15. Dez. 2017, Toronto, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MEUSCHKE, Norman, Nicolas SIEBECK, Moritz SCHUBOTZ, Bela GIPP, 2017. Analyzing Semantic Concept Patterns to Detect Academic Plagiarism. 6th International Workshop on Mining Scientific Publications WSOP 2017. Toronto, Canada, 15. Dez. 2017 - 15. Dez. 2017. In: Proceedings of the 6th International Workshop on Mining Scientific Publications - WOSP 2017. New York, USA: ACM Press, 2017, pp. 46-53. ISBN 978-1-4503-5388-5. Available under: doi: 10.1145/3127526.3127535
BibTex
@inproceedings{Meuschke2017Analy-41874,
  year={2017},
  doi={10.1145/3127526.3127535},
  title={Analyzing Semantic Concept Patterns to Detect Academic Plagiarism},
  isbn={978-1-4503-5388-5},
  publisher={ACM Press},
  address={New York, USA},
  booktitle={Proceedings of the 6th International Workshop on Mining Scientific Publications  - WOSP 2017},
  pages={46--53},
  author={Meuschke, Norman and Siebeck, Nicolas and Schubotz, Moritz and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41874">
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41874"/>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T10:38:01Z</dc:date>
    <dcterms:issued>2017</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T10:38:01Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41874/1/Meuschke_2-1q1kt47jsgza32.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41874/1/Meuschke_2-1q1kt47jsgza32.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Siebeck, Nicolas</dc:creator>
    <dcterms:abstract xml:lang="eng">Detecting academic plagiarism is a pressing problem, e.g., for educational and research institutions, funding agencies, and academic publishers. Existing plagiarism detection systems reliably identify copied text, or near copies of text, but often fail to detect disguised forms of academic plagiarism, such as paraphrases, translations, and idea plagiarism. We present Semantic Concept Pattern Analysis - an approach that performs an integrated analysis of semantic text relatedness and structural text similarity. Using 25 officially retracted academic plagiarism cases, we demonstrate that our approach can detect plagiarism that established text matching approaches would not identify. We view our approach as a promising addition to improve the detection capabilities for strong paraphrases. We plan to further improve Semantic Concept Pattern Analysis and include the approach as part of an integrated detection process that analyzes heterogeneous similarity features to better identify the many possible forms of plagiarism in academic documents.</dcterms:abstract>
    <dcterms:title>Analyzing Semantic Concept Patterns to Detect Academic Plagiarism</dcterms:title>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:contributor>Siebeck, Nicolas</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen