Publikation: Long-range dependence
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Wiley interdisciplinary reviews: Computational Statistics. 2010, 2(1), pp. 26-35. Available under: doi: 10.1002/wics.52
Zusammenfassung
Long-range dependence (LRD) refers to dependence structures that decay slowly with increasing distance. Mathematically this leads to limit theorems that differ from the short-memory case, and to major corrections of standard statistical methods. Here, a brief overview of the probabilistic foundations and statistical methods is given. We focus on how LRD is defined, which typical models may generate LRD, how to do statistical inference for stationary and nonstationary long-memory models, and how to distinguish between LRD and alternative models that may mimic long-memory behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, 2010. Long-range dependence. In: Wiley interdisciplinary reviews: Computational Statistics. 2010, 2(1), pp. 26-35. Available under: doi: 10.1002/wics.52BibTex
@article{Beran2010Longr-782, year={2010}, doi={10.1002/wics.52}, title={Long-range dependence}, number={1}, volume={2}, journal={Wiley interdisciplinary reviews: Computational Statistics}, pages={26--35}, author={Beran, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/782"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:52Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Long-range dependence</dcterms:title> <dcterms:issued>2010</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Beran, Jan</dc:creator> <dc:contributor>Beran, Jan</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:52Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/782"/> <dcterms:bibliographicCitation>Publ. in: Wiley interdisciplinary reviews: Computational Statistics, 2 (2010), 1, pp. 26-35</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Long-range dependence (LRD) refers to dependence structures that decay slowly with increasing distance. Mathematically this leads to limit theorems that differ from the short-memory case, and to major corrections of standard statistical methods. Here, a brief overview of the probabilistic foundations and statistical methods is given. We focus on how LRD is defined, which typical models may generate LRD, how to do statistical inference for stationary and nonstationary long-memory models, and how to distinguish between LRD and alternative models that may mimic long-memory behavior.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja