Publikation: Pairwise interaction tensor factorization for personalized tag recommendation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Tagging plays an important role in many recent websites. Recommender systems can help to suggest a user the tags he might want to use for tagging a specific item. Factorization models based on the Tucker Decomposition (TD) model have been shown to provide high quality tag recommendations outperforming other approaches like PageRank, FolkRank, collaborative filtering, etc. The problem with TD models is the cubic core tensor resulting in a cubic runtime in the factorization dimension for prediction and learning. In this paper, we present the factorization model PITF (Pairwise Interaction Tensor Factorization) which is a special case of the TD model with linear runtime both for learning and prediction. PITF explicitly models the pairwise interactions between users, items and tags. The model is learned with an adaption of the Bayesian personalized ranking (BPR) criterion which originally has been introduced for item recommendation. Empirically, we show on real world datasets that this model outperforms TD largely in runtime and even can achieve better prediction quality. Besides our lab experiments, PITF has also won the ECML/PKDD Discovery Challenge 2009 for graph-based tag recommendation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RENDLE, Steffen, Lars SCHMIDT-THIEME, 2010. Pairwise interaction tensor factorization for personalized tag recommendation. The third ACM international conference on Web search and data mining - WSDM '10. New York, New York, USA, 4. Feb. 2010 - 6. Feb. 2010. In: Proceedings of the third ACM international conference on Web search and data mining - WSDM '10. New York, New York, USA: ACM Press, 2010, pp. 81-90. ISBN 978-1-60558-889-6. Available under: doi: 10.1145/1718487.1718498BibTex
@inproceedings{Rendle2010Pairw-12685, year={2010}, doi={10.1145/1718487.1718498}, title={Pairwise interaction tensor factorization for personalized tag recommendation}, isbn={978-1-60558-889-6}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the third ACM international conference on Web search and data mining - WSDM '10}, pages={81--90}, author={Rendle, Steffen and Schmidt-Thieme, Lars} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12685"> <dcterms:title>Pairwise interaction tensor factorization for personalized tag recommendation</dcterms:title> <dcterms:abstract xml:lang="eng">Tagging plays an important role in many recent websites. Recommender systems can help to suggest a user the tags he might want to use for tagging a specific item. Factorization models based on the Tucker Decomposition (TD) model have been shown to provide high quality tag recommendations outperforming other approaches like PageRank, FolkRank, collaborative filtering, etc. The problem with TD models is the cubic core tensor resulting in a cubic runtime in the factorization dimension for prediction and learning. In this paper, we present the factorization model PITF (Pairwise Interaction Tensor Factorization) which is a special case of the TD model with linear runtime both for learning and prediction. PITF explicitly models the pairwise interactions between users, items and tags. The model is learned with an adaption of the Bayesian personalized ranking (BPR) criterion which originally has been introduced for item recommendation. Empirically, we show on real world datasets that this model outperforms TD largely in runtime and even can achieve better prediction quality. Besides our lab experiments, PITF has also won the ECML/PKDD Discovery Challenge 2009 for graph-based tag recommendation.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12685"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Rendle, Steffen</dc:contributor> <dc:contributor>Schmidt-Thieme, Lars</dc:contributor> <dc:creator>Rendle, Steffen</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Schmidt-Thieme, Lars</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:07:58Z</dc:date> <dcterms:issued>2010</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: WSDM : proceedings of the Third ACM International Conference on Web Search & Data Mining; February 3 - 6, 2010, New York City, NY, USA. New York: ACM, 2010, pp. 81-90</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:07:58Z</dcterms:available> </rdf:Description> </rdf:RDF>