Publikation:

Pairwise interaction tensor factorization for personalized tag recommendation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Schmidt-Thieme, Lars

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the third ACM international conference on Web search and data mining - WSDM '10. New York, New York, USA: ACM Press, 2010, pp. 81-90. ISBN 978-1-60558-889-6. Available under: doi: 10.1145/1718487.1718498

Zusammenfassung

Tagging plays an important role in many recent websites. Recommender systems can help to suggest a user the tags he might want to use for tagging a specific item. Factorization models based on the Tucker Decomposition (TD) model have been shown to provide high quality tag recommendations outperforming other approaches like PageRank, FolkRank, collaborative filtering, etc. The problem with TD models is the cubic core tensor resulting in a cubic runtime in the factorization dimension for prediction and learning. In this paper, we present the factorization model PITF (Pairwise Interaction Tensor Factorization) which is a special case of the TD model with linear runtime both for learning and prediction. PITF explicitly models the pairwise interactions between users, items and tags. The model is learned with an adaption of the Bayesian personalized ranking (BPR) criterion which originally has been introduced for item recommendation. Empirically, we show on real world datasets that this model outperforms TD largely in runtime and even can achieve better prediction quality. Besides our lab experiments, PITF has also won the ECML/PKDD Discovery Challenge 2009 for graph-based tag recommendation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Algorithms, Experimentation, Measurement, Performance

Konferenz

The third ACM international conference on Web search and data mining - WSDM '10, 4. Feb. 2010 - 6. Feb. 2010, New York, New York, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RENDLE, Steffen, Lars SCHMIDT-THIEME, 2010. Pairwise interaction tensor factorization for personalized tag recommendation. The third ACM international conference on Web search and data mining - WSDM '10. New York, New York, USA, 4. Feb. 2010 - 6. Feb. 2010. In: Proceedings of the third ACM international conference on Web search and data mining - WSDM '10. New York, New York, USA: ACM Press, 2010, pp. 81-90. ISBN 978-1-60558-889-6. Available under: doi: 10.1145/1718487.1718498
BibTex
@inproceedings{Rendle2010Pairw-12685,
  year={2010},
  doi={10.1145/1718487.1718498},
  title={Pairwise interaction tensor factorization for personalized tag recommendation},
  isbn={978-1-60558-889-6},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the third ACM international conference on Web search and data mining - WSDM '10},
  pages={81--90},
  author={Rendle, Steffen and Schmidt-Thieme, Lars}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12685">
    <dcterms:title>Pairwise interaction tensor factorization for personalized tag recommendation</dcterms:title>
    <dcterms:abstract xml:lang="eng">Tagging plays an important role in many recent websites. Recommender systems can help to suggest a user the tags he might want to use for tagging a specific item. Factorization models based on the Tucker Decomposition (TD) model have been shown to provide high quality tag recommendations outperforming other approaches like PageRank, FolkRank, collaborative filtering, etc. The problem with TD models is the cubic core tensor resulting in a cubic runtime in the factorization dimension for prediction and learning. In this paper, we present the factorization model PITF (Pairwise Interaction Tensor Factorization) which is a special case of the TD model with linear runtime both for learning and prediction. PITF explicitly models the pairwise interactions between users, items and tags. The model is learned with an adaption of the Bayesian personalized ranking (BPR) criterion which originally has been introduced for item recommendation. Empirically, we show on real world datasets that this model outperforms TD largely in runtime and even can achieve better prediction quality. Besides our lab experiments, PITF has also won the ECML/PKDD Discovery Challenge 2009 for graph-based tag recommendation.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12685"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Rendle, Steffen</dc:contributor>
    <dc:contributor>Schmidt-Thieme, Lars</dc:contributor>
    <dc:creator>Rendle, Steffen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schmidt-Thieme, Lars</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:07:58Z</dc:date>
    <dcterms:issued>2010</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>First publ. in: WSDM : proceedings of the Third ACM International Conference on Web Search &amp; Data Mining; February 3 - 6, 2010, New York City, NY, USA. New York: ACM, 2010, pp. 81-90</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:07:58Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen