Publikation:

Structural imaging biomarkers of Alzheimer's disease : predicting disease progression

Lade...
Vorschaubild

Dateien

Eskildsen_2-1pyzy5564tzr42.pdf
Eskildsen_2-1pyzy5564tzr42.pdfGröße: 819.27 KBDownloads: 319

Datum

2015

Autor:innen

Eskildsen, Simon F.
Coupé, Pierrick
Fonov, Vladimir S.
Collins, D. Louis

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neurobiology of Aging. 2015, 36(Supplement 1), pp. S23-S31. ISSN 0197-4580. eISSN 1558-1497. Available under: doi: 10.1016/j.neurobiolaging.2014.04.034

Zusammenfassung

Optimized magnetic resonance imaging (MRI)-based biomarkers of Alzheimer's disease (AD) may allow earlier detection and refined prediction of the disease. In addition, they could serve as valuable tools when designing therapeutic studies of individuals at risk of AD. In this study, we combine (1) a novel method for grading medial temporal lobe structures with (2) robust cortical thickness measurements to predict AD among subjects with mild cognitive impairment (MCI) from a single T1-weighted MRI scan. Using AD and cognitively normal individuals, we generate a set of features potentially discriminating between MCI subjects who convert to AD and those who remain stable over a period of 3 years. Using mutual information-based feature selection, we identify 5 key features optimizing the classification of MCI converters. These features are the left and right hippocampi gradings and cortical thicknesses of the left precuneus, left superior temporal sulcus, and right anterior part of the parahippocampal gyrus. We show that these features are highly stable in cross-validation and enable a prediction accuracy of 72% using a simple linear discriminant classifier, the highest prediction accuracy obtained on the baseline Alzheimer's Disease Neuroimaging Initiative first phase cohort to date. The proposed structural features are consistent with Braak stages and previously reported atrophic patterns in AD and are easy to transfer to new cohorts and to clinical practice.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Alzheimer; MCI; MRI; Early detection; Prediction; SNIPE; Fast Accurate Cortex Extraction; Hippocampus; Cortical thickness

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ESKILDSEN, Simon F., Pierrick COUPÉ, Vladimir S. FONOV, Jens C. PRUESSNER, D. Louis COLLINS, 2015. Structural imaging biomarkers of Alzheimer's disease : predicting disease progression. In: Neurobiology of Aging. 2015, 36(Supplement 1), pp. S23-S31. ISSN 0197-4580. eISSN 1558-1497. Available under: doi: 10.1016/j.neurobiolaging.2014.04.034
BibTex
@article{Eskildsen2015-01Struc-38353,
  year={2015},
  doi={10.1016/j.neurobiolaging.2014.04.034},
  title={Structural imaging biomarkers of Alzheimer's disease : predicting disease progression},
  number={Supplement 1},
  volume={36},
  issn={0197-4580},
  journal={Neurobiology of Aging},
  pages={S23--S31},
  author={Eskildsen, Simon F. and Coupé, Pierrick and Fonov, Vladimir S. and Pruessner, Jens C. and Collins, D. Louis}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38353">
    <dc:creator>Eskildsen, Simon F.</dc:creator>
    <dcterms:abstract xml:lang="eng">Optimized magnetic resonance imaging (MRI)-based biomarkers of Alzheimer's disease (AD) may allow earlier detection and refined prediction of the disease. In addition, they could serve as valuable tools when designing therapeutic studies of individuals at risk of AD. In this study, we combine (1) a novel method for grading medial temporal lobe structures with (2) robust cortical thickness measurements to predict AD among subjects with mild cognitive impairment (MCI) from a single T1-weighted MRI scan. Using AD and cognitively normal individuals, we generate a set of features potentially discriminating between MCI subjects who convert to AD and those who remain stable over a period of 3 years. Using mutual information-based feature selection, we identify 5 key features optimizing the classification of MCI converters. These features are the left and right hippocampi gradings and cortical thicknesses of the left precuneus, left superior temporal sulcus, and right anterior part of the parahippocampal gyrus. We show that these features are highly stable in cross-validation and enable a prediction accuracy of 72% using a simple linear discriminant classifier, the highest prediction accuracy obtained on the baseline Alzheimer's Disease Neuroimaging Initiative first phase cohort to date. The proposed structural features are consistent with Braak stages and previously reported atrophic patterns in AD and are easy to transfer to new cohorts and to clinical practice.</dcterms:abstract>
    <dc:creator>Collins, D. Louis</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pruessner, Jens C.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38353/1/Eskildsen_2-1pyzy5564tzr42.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-06T07:11:15Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Structural imaging biomarkers of Alzheimer's disease : predicting disease progression</dcterms:title>
    <dc:creator>Coupé, Pierrick</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Fonov, Vladimir S.</dc:contributor>
    <dcterms:issued>2015-01</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-06T07:11:15Z</dcterms:available>
    <dc:contributor>Pruessner, Jens C.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Collins, D. Louis</dc:contributor>
    <dc:creator>Fonov, Vladimir S.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38353/1/Eskildsen_2-1pyzy5564tzr42.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Coupé, Pierrick</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38353"/>
    <dc:contributor>Eskildsen, Simon F.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen