Publikation: Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We theoretically study a silicon triple quantum dot (TQD) system coupled to a superconducting microwave resonator. The response signal of an injected probe signal can be used to extract information about the level structure by measuring the transmission and phase shift of the output field. This information can further be used to gain knowledge about the valley splittings and valley phases in the individual dots. Since relevant valley states are typically split by several , a finite temperature or an applied external bias voltage is required to populate energetically excited states. The theoretical methods in this paper include a capacitor model to fit experimental charging energies, an extended Hubbard model to describe the tunneling dynamics, a rate equation model to find the occupation probabilities, and an input–output model to determine the response signal of the resonator.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RUSS, Maximilian, Csaba G. PÉTERFALVI, Guido BURKARD, 2020. Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator. In: Journal of Physics: Condensed Matter. Institute of Physics Publishing (IOP). 2020, 32(16), 165301. ISSN 0953-8984. eISSN 1361-648X. Available under: doi: 10.1088/1361-648X/ab613fBibTex
@article{Russ2020Theor-49843, year={2020}, doi={10.1088/1361-648X/ab613f}, title={Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator}, number={16}, volume={32}, issn={0953-8984}, journal={Journal of Physics: Condensed Matter}, author={Russ, Maximilian and Péterfalvi, Csaba G. and Burkard, Guido}, note={Article Number: 165301} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49843"> <dcterms:abstract xml:lang="eng">We theoretically study a silicon triple quantum dot (TQD) system coupled to a superconducting microwave resonator. The response signal of an injected probe signal can be used to extract information about the level structure by measuring the transmission and phase shift of the output field. This information can further be used to gain knowledge about the valley splittings and valley phases in the individual dots. Since relevant valley states are typically split by several , a finite temperature or an applied external bias voltage is required to populate energetically excited states. The theoretical methods in this paper include a capacitor model to fit experimental charging energies, an extended Hubbard model to describe the tunneling dynamics, a rate equation model to find the occupation probabilities, and an input–output model to determine the response signal of the resonator.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-16T07:35:17Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49843"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:title>Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator</dcterms:title> <dc:creator>Péterfalvi, Csaba G.</dc:creator> <dc:contributor>Péterfalvi, Csaba G.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dc:contributor>Russ, Maximilian</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Burkard, Guido</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-16T07:35:17Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49843/1/Russ_2-1pwj74q9dj8k96.pdf"/> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Burkard, Guido</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49843/1/Russ_2-1pwj74q9dj8k96.pdf"/> <dc:creator>Russ, Maximilian</dc:creator> <dc:rights>Attribution 3.0 Unported</dc:rights> </rdf:Description> </rdf:RDF>