Publikation: Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the literature about association analysis, many interestingness measures have been proposed to assess the quality of obtained association rules in order to select a small set of the most interesting among them. In the particular case of hierarchically organized items and generalized association rules connecting them, a measure that dealt appropriately with the hierarchy would be advantageous. Here we present the further developments of a new class of such hierarchical interestingness measures and compare them with a large set of conventional measures and with three hierarchical pruning methods from the literature. The aim is to find interesting pairwise generalized association rules connecting the concepts of multiple ontologies. Interested in the broad empirical evaluation of interestingness measures, we compared the rules obtained by 37 methods on four real world data sets against predefined ground truth sets of associations. To this end, we adopted a framework of instance-based ontology matching and extended the set of performance measures by two novel measures: relation learning recall and precision which take into account hierarchical relationships.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENITES, Fernando, Elena SAPOZHNIKOVA, 2014. Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules. In: IEEE Transactions on Knowledge and Data Engineering. 2014, 26(12), pp. 3012-3025. ISSN 1041-4347. eISSN 1558-2191. Available under: doi: 10.1109/TKDE.2014.2320722BibTex
@article{Benites2014Evalu-29269, year={2014}, doi={10.1109/TKDE.2014.2320722}, title={Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules}, number={12}, volume={26}, issn={1041-4347}, journal={IEEE Transactions on Knowledge and Data Engineering}, pages={3012--3025}, author={Benites, Fernando and Sapozhnikova, Elena} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29269"> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">In the literature about association analysis, many interestingness measures have been proposed to assess the quality of obtained association rules in order to select a small set of the most interesting among them. In the particular case of hierarchically organized items and generalized association rules connecting them, a measure that dealt appropriately with the hierarchy would be advantageous. Here we present the further developments of a new class of such hierarchical interestingness measures and compare them with a large set of conventional measures and with three hierarchical pruning methods from the literature. The aim is to find interesting pairwise generalized association rules connecting the concepts of multiple ontologies. Interested in the broad empirical evaluation of interestingness measures, we compared the rules obtained by 37 methods on four real world data sets against predefined ground truth sets of associations. To this end, we adopted a framework of instance-based ontology matching and extended the set of performance measures by two novel measures: relation learning recall and precision which take into account hierarchical relationships.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:creator>Sapozhnikova, Elena</dc:creator> <dc:creator>Benites, Fernando</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-21T10:34:04Z</dc:date> <dc:contributor>Benites, Fernando</dc:contributor> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29269"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-21T10:34:04Z</dcterms:available> </rdf:Description> </rdf:RDF>