Publikation:

Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

DAMIART
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Knowledge and Data Engineering. 2014, 26(12), pp. 3012-3025. ISSN 1041-4347. eISSN 1558-2191. Available under: doi: 10.1109/TKDE.2014.2320722

Zusammenfassung

In the literature about association analysis, many interestingness measures have been proposed to assess the quality of obtained association rules in order to select a small set of the most interesting among them. In the particular case of hierarchically organized items and generalized association rules connecting them, a measure that dealt appropriately with the hierarchy would be advantageous. Here we present the further developments of a new class of such hierarchical interestingness measures and compare them with a large set of conventional measures and with three hierarchical pruning methods from the literature. The aim is to find interesting pairwise generalized association rules connecting the concepts of multiple ontologies. Interested in the broad empirical evaluation of interestingness measures, we compared the rules obtained by 37 methods on four real world data sets against predefined ground truth sets of associations. To this end, we adopted a framework of instance-based ontology matching and extended the set of performance measures by two novel measures: relation learning recall and precision which take into account hierarchical relationships.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Association rules; Data mining; Ontologies; Taxonomy; Data mining;association rules; interestingness measures; ontology matching

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2014. Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules. In: IEEE Transactions on Knowledge and Data Engineering. 2014, 26(12), pp. 3012-3025. ISSN 1041-4347. eISSN 1558-2191. Available under: doi: 10.1109/TKDE.2014.2320722
BibTex
@article{Benites2014Evalu-29269,
  year={2014},
  doi={10.1109/TKDE.2014.2320722},
  title={Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules},
  number={12},
  volume={26},
  issn={1041-4347},
  journal={IEEE Transactions on Knowledge and Data Engineering},
  pages={3012--3025},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29269">
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>Evaluation of Hierarchical Interestingness Measures for Mining Pairwise Generalized Association Rules</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">In the literature about association analysis, many interestingness measures have been proposed to assess the quality of obtained association rules in order to select a small set of the most interesting among them. In the particular case of hierarchically organized items and generalized association rules connecting them, a measure that dealt appropriately with the hierarchy would be advantageous. Here we present the further developments of a new class of such hierarchical interestingness measures and compare them with a large set of conventional measures and with three hierarchical pruning methods from the literature. The aim is to find interesting pairwise generalized association rules connecting the concepts of multiple ontologies. Interested in the broad empirical evaluation of interestingness measures, we compared the rules obtained by 37 methods on four real world data sets against predefined ground truth sets of associations. To this end, we adopted a framework of instance-based ontology matching and extended the set of performance measures by two novel measures: relation learning recall and precision which take into account hierarchical relationships.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-21T10:34:04Z</dc:date>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29269"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-21T10:34:04Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen