Publikation: Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Deep learning is a field of machine learning that has been the focus of active research and successful applications in recent years. Offline handwriting recognition is one of the research fields and applications were deep neural networks have shown high accuracy. Deep learning models and their training pipeline show a large amount of hyper-parameters in their data selection, transformation, network topology and training process that are sometimes interdependent. This increases the overall difficulty and time necessary for building and training a model for a specific data set and task at hand. This work proposes a novel visualization-assisted workflow that guides the model developer through the hyper-parameter search in order to identify relevant parameters and modify them in a meaningful way. This decreases the overall time necessary for building and training a model. The contributions of this work are a workflow for hyper-parameter search in offline handwriting recognition and a heat map based visualization technique for deep neural networks in multi-line offline handwriting recognition. This work applies to offline handwriting recognition, but the general workflow can possibly be adapted to other tasks as well.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHALL, Martin, Dominik SACHA, Manuel STEIN, Matthias O. FRANZ, Daniel A. KEIM, 2018. Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition. Symposium on Visualization in Data Science (VDS) at IEEE VIS 2018. Berlin, 22. Okt. 2018. In: Symposium on Visualization in Data Science (VDS) at IEEE VIS 2018. 2018BibTex
@inproceedings{Schall2018Visua-45050, year={2018}, title={Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition}, url={https://scibib.dbvis.de/publications/view/773}, booktitle={Symposium on Visualization in Data Science (VDS) at IEEE VIS 2018}, author={Schall, Martin and Sacha, Dominik and Stein, Manuel and Franz, Matthias O. and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45050"> <dc:contributor>Franz, Matthias O.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45050/1/Schall_2-1prqtf0ga5nfs7.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Franz, Matthias O.</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45050"/> <dc:creator>Schall, Martin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:31:24Z</dc:date> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T15:31:24Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45050/1/Schall_2-1prqtf0ga5nfs7.pdf"/> <dc:contributor>Schall, Martin</dc:contributor> <dc:contributor>Sacha, Dominik</dc:contributor> <dcterms:abstract xml:lang="eng">Deep learning is a field of machine learning that has been the focus of active research and successful applications in recent years. Offline handwriting recognition is one of the research fields and applications were deep neural networks have shown high accuracy. Deep learning models and their training pipeline show a large amount of hyper-parameters in their data selection, transformation, network topology and training process that are sometimes interdependent. This increases the overall difficulty and time necessary for building and training a model for a specific data set and task at hand. This work proposes a novel visualization-assisted workflow that guides the model developer through the hyper-parameter search in order to identify relevant parameters and modify them in a meaningful way. This decreases the overall time necessary for building and training a model. The contributions of this work are a workflow for hyper-parameter search in offline handwriting recognition and a heat map based visualization technique for deep neural networks in multi-line offline handwriting recognition. This work applies to offline handwriting recognition, but the general workflow can possibly be adapted to other tasks as well.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Sacha, Dominik</dc:creator> <dc:contributor>Stein, Manuel</dc:contributor> <dcterms:title>Visualization-Assisted Development of Deep Learning Models in Offline Handwriting Recognition</dcterms:title> <dc:creator>Stein, Manuel</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>