Publikation: A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Bio-hybrid systems-close couplings of natural organisms with technology---are high potential and still underexplored. In existing work, robots have mostly influenced group behaviors of animals. We explore the possibilities of mixing robots with natural plants, merging useful attributes. Significant synergies arise by combining the plants' ability to efficiently produce shaped material and the robots' ability to extend sensing and decision-making behaviors. However, programming robots to control plant motion and shape requires good knowledge of complex plant behaviors. Therefore, we use machine learning to create a holistic plant model and evolve robot controllers. As a benchmark task we choose obstacle avoidance. We use computer vision to construct a model of plant stem stiffening and motion dynamics by training an LSTM network. The LSTM network acts as a forward model predicting change in the plant, driving the evolution of neural network robot controllers. The evolved controllers augment the plants' natural light-finding and tissue-stiffening behaviors to avoid obstacles and grow desired shapes. We successfully verify the robot controllers and bio-hybrid behavior in reality, with a physical setup and actual plants.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAHBY, Mostafa, Mary Katherine HEINRICH, Daniel Nicolas HOFSTADLER, Payam ZAHADAT, Sebastian RISI, Phil AYRES, Thomas SCHMICKL, Heiko HAMANN, 2018. A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems. GECCO '18 : Genetic and Evolutionary Computation Conference. Kyoto, Japan, 15. Juli 2018 - 19. Juli 2018. In: AGUIRRE, Hernan, ed.. GECCO '18 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2018, pp. 165-172. ISBN 978-1-4503-5618-3. Available under: doi: 10.1145/3205455.3205516BibTex
@inproceedings{Wahby2018-04-18T12:30:18ZRobot-59864, year={2018}, doi={10.1145/3205455.3205516}, title={A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems}, isbn={978-1-4503-5618-3}, publisher={ACM}, address={New York, NY}, booktitle={GECCO '18 : Proceedings of the Genetic and Evolutionary Computation Conference}, pages={165--172}, editor={Aguirre, Hernan}, author={Wahby, Mostafa and Heinrich, Mary Katherine and Hofstadler, Daniel Nicolas and Zahadat, Payam and Risi, Sebastian and Ayres, Phil and Schmickl, Thomas and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59864"> <dc:creator>Heinrich, Mary Katherine</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59864"/> <dc:creator>Zahadat, Payam</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Risi, Sebastian</dc:contributor> <dc:creator>Risi, Sebastian</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Ayres, Phil</dc:creator> <dc:contributor>Hofstadler, Daniel Nicolas</dc:contributor> <dc:contributor>Heinrich, Mary Katherine</dc:contributor> <dcterms:title>A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems</dcterms:title> <dc:creator>Hamann, Heiko</dc:creator> <dc:contributor>Ayres, Phil</dc:contributor> <dcterms:issued>2018-04-18T12:30:18Z</dcterms:issued> <dc:contributor>Wahby, Mostafa</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Bio-hybrid systems-close couplings of natural organisms with technology---are high potential and still underexplored. In existing work, robots have mostly influenced group behaviors of animals. We explore the possibilities of mixing robots with natural plants, merging useful attributes. Significant synergies arise by combining the plants' ability to efficiently produce shaped material and the robots' ability to extend sensing and decision-making behaviors. However, programming robots to control plant motion and shape requires good knowledge of complex plant behaviors. Therefore, we use machine learning to create a holistic plant model and evolve robot controllers. As a benchmark task we choose obstacle avoidance. We use computer vision to construct a model of plant stem stiffening and motion dynamics by training an LSTM network. The LSTM network acts as a forward model predicting change in the plant, driving the evolution of neural network robot controllers. The evolved controllers augment the plants' natural light-finding and tissue-stiffening behaviors to avoid obstacles and grow desired shapes. We successfully verify the robot controllers and bio-hybrid behavior in reality, with a physical setup and actual plants.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59864/1/Wahby_2-1pnzii3g5pk174.pdf"/> <dc:creator>Wahby, Mostafa</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:04:45Z</dc:date> <dc:contributor>Zahadat, Payam</dc:contributor> <dc:creator>Hofstadler, Daniel Nicolas</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59864/1/Wahby_2-1pnzii3g5pk174.pdf"/> <dc:contributor>Schmickl, Thomas</dc:contributor> <dc:creator>Schmickl, Thomas</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:04:45Z</dcterms:available> <dc:contributor>Hamann, Heiko</dc:contributor> </rdf:Description> </rdf:RDF>