Publikation:

A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems

Lade...
Vorschaubild

Dateien

Wahby_2-1pnzii3g5pk174.pdf
Wahby_2-1pnzii3g5pk174.pdfGröße: 440.18 KBDownloads: 8

Datum

2018

Autor:innen

Heinrich, Mary Katherine
Hofstadler, Daniel Nicolas
Zahadat, Payam
Risi, Sebastian
Ayres, Phil
Schmickl, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

AGUIRRE, Hernan, ed.. GECCO '18 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2018, pp. 165-172. ISBN 978-1-4503-5618-3. Available under: doi: 10.1145/3205455.3205516

Zusammenfassung

Bio-hybrid systems-close couplings of natural organisms with technology---are high potential and still underexplored. In existing work, robots have mostly influenced group behaviors of animals. We explore the possibilities of mixing robots with natural plants, merging useful attributes. Significant synergies arise by combining the plants' ability to efficiently produce shaped material and the robots' ability to extend sensing and decision-making behaviors. However, programming robots to control plant motion and shape requires good knowledge of complex plant behaviors. Therefore, we use machine learning to create a holistic plant model and evolve robot controllers. As a benchmark task we choose obstacle avoidance. We use computer vision to construct a model of plant stem stiffening and motion dynamics by training an LSTM network. The LSTM network acts as a forward model predicting change in the plant, driving the evolution of neural network robot controllers. The evolved controllers augment the plants' natural light-finding and tissue-stiffening behaviors to avoid obstacles and grow desired shapes. We successfully verify the robot controllers and bio-hybrid behavior in reality, with a physical setup and actual plants.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

GECCO '18 : Genetic and Evolutionary Computation Conference, 15. Juli 2018 - 19. Juli 2018, Kyoto, Japan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WAHBY, Mostafa, Mary Katherine HEINRICH, Daniel Nicolas HOFSTADLER, Payam ZAHADAT, Sebastian RISI, Phil AYRES, Thomas SCHMICKL, Heiko HAMANN, 2018. A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems. GECCO '18 : Genetic and Evolutionary Computation Conference. Kyoto, Japan, 15. Juli 2018 - 19. Juli 2018. In: AGUIRRE, Hernan, ed.. GECCO '18 : Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY: ACM, 2018, pp. 165-172. ISBN 978-1-4503-5618-3. Available under: doi: 10.1145/3205455.3205516
BibTex
@inproceedings{Wahby2018-04-18T12:30:18ZRobot-59864,
  year={2018},
  doi={10.1145/3205455.3205516},
  title={A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems},
  isbn={978-1-4503-5618-3},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO '18 : Proceedings of the Genetic and Evolutionary Computation Conference},
  pages={165--172},
  editor={Aguirre, Hernan},
  author={Wahby, Mostafa and Heinrich, Mary Katherine and Hofstadler, Daniel Nicolas and Zahadat, Payam and Risi, Sebastian and Ayres, Phil and Schmickl, Thomas and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59864">
    <dc:creator>Heinrich, Mary Katherine</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59864"/>
    <dc:creator>Zahadat, Payam</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Risi, Sebastian</dc:contributor>
    <dc:creator>Risi, Sebastian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Ayres, Phil</dc:creator>
    <dc:contributor>Hofstadler, Daniel Nicolas</dc:contributor>
    <dc:contributor>Heinrich, Mary Katherine</dc:contributor>
    <dcterms:title>A Robot to Shape your Natural Plant : The Machine Learning Approach to Model and Control Bio-Hybrid Systems</dcterms:title>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:contributor>Ayres, Phil</dc:contributor>
    <dcterms:issued>2018-04-18T12:30:18Z</dcterms:issued>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Bio-hybrid systems-close couplings of natural organisms with technology---are high potential and still underexplored. In existing work, robots have mostly influenced group behaviors of animals. We explore the possibilities of mixing robots with natural plants, merging useful attributes. Significant synergies arise by combining the plants' ability to efficiently produce shaped material and the robots' ability to extend sensing and decision-making behaviors. However, programming robots to control plant motion and shape requires good knowledge of complex plant behaviors. Therefore, we use machine learning to create a holistic plant model and evolve robot controllers. As a benchmark task we choose obstacle avoidance. We use computer vision to construct a model of plant stem stiffening and motion dynamics by training an LSTM network. The LSTM network acts as a forward model predicting change in the plant, driving the evolution of neural network robot controllers. The evolved controllers augment the plants' natural light-finding and tissue-stiffening behaviors to avoid obstacles and grow desired shapes. We successfully verify the robot controllers and bio-hybrid behavior in reality, with a physical setup and actual plants.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59864/1/Wahby_2-1pnzii3g5pk174.pdf"/>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:04:45Z</dc:date>
    <dc:contributor>Zahadat, Payam</dc:contributor>
    <dc:creator>Hofstadler, Daniel Nicolas</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59864/1/Wahby_2-1pnzii3g5pk174.pdf"/>
    <dc:contributor>Schmickl, Thomas</dc:contributor>
    <dc:creator>Schmickl, Thomas</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-20T13:04:45Z</dcterms:available>
    <dc:contributor>Hamann, Heiko</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen