Publikation:

A novel dementia diagnosis strategy on arterial spin labeling magnetic resonance images via pixel-wise partial volume correction and ranking

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Multimedia Tools and Applications. 2016, 75(4), pp. 2067-2090. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-014-2395-2

Zusammenfassung

Arterial Spin Labeling (ASL) is an emerging magnetic resonance imaging technique attracting increasing attention in dementia diagnosis only beginning from recent years. ASL is capable to provide direct and quantitative measurement of cerebral blood flow (CBF) of scanned patients, so that brain atrophy of demented patients could be revealed by measured low CBF within certain brain regions through ASL. However, partial volume effects (PVE) mainly caused by signal cross-contamination due to pixel heterogeneity and limited spatial resolution of ASL, often prevents CBF from being precisely measured. Inaccurate CBF is prone to mislead and even deteriorate dementia disease diagnosis results, thereafter. In this paper, a novel dementia disease diagnosis strategy based on ASL is proposed for the first time. The diagnosis strategy is composed of two steps: 1) to conduct pixel-wise PVE correction on original ASL images and 2) to predict dementia disease severities based on corrected ASL images via ranking. Extensive experiments and comprehensive statistical analysis are carried out to demonstrate the superiority of the new strategy with comparison to several existing ones. Promising results are reported from the statistical point of view.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Magnetic Resonance Image; Alzheimer’s Disease; Ranking

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUANG, Wei, Peng ZHANG, Minmin SHEN, 2016. A novel dementia diagnosis strategy on arterial spin labeling magnetic resonance images via pixel-wise partial volume correction and ranking. In: Multimedia Tools and Applications. 2016, 75(4), pp. 2067-2090. ISSN 1380-7501. eISSN 1573-7721. Available under: doi: 10.1007/s11042-014-2395-2
BibTex
@article{Huang2016-02novel-30213,
  year={2016},
  doi={10.1007/s11042-014-2395-2},
  title={A novel dementia diagnosis strategy on arterial spin labeling magnetic resonance images via pixel-wise partial volume correction and ranking},
  number={4},
  volume={75},
  issn={1380-7501},
  journal={Multimedia Tools and Applications},
  pages={2067--2090},
  author={Huang, Wei and Zhang, Peng and Shen, Minmin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30213">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Huang, Wei</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T14:32:39Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30213"/>
    <dc:contributor>Zhang, Peng</dc:contributor>
    <dcterms:abstract xml:lang="eng">Arterial Spin Labeling (ASL) is an emerging magnetic resonance imaging technique attracting increasing attention in dementia diagnosis only beginning from recent years. ASL is capable to provide direct and quantitative measurement of cerebral blood flow (CBF) of scanned patients, so that brain atrophy of demented patients could be revealed by measured low CBF within certain brain regions through ASL. However, partial volume effects (PVE) mainly caused by signal cross-contamination due to pixel heterogeneity and limited spatial resolution of ASL, often prevents CBF from being precisely measured. Inaccurate CBF is prone to mislead and even deteriorate dementia disease diagnosis results, thereafter. In this paper, a novel dementia disease diagnosis strategy based on ASL is proposed for the first time. The diagnosis strategy is composed of two steps: 1) to conduct pixel-wise PVE correction on original ASL images and 2) to predict dementia disease severities based on corrected ASL images via ranking. Extensive experiments and comprehensive statistical analysis are carried out to demonstrate the superiority of the new strategy with comparison to several existing ones. Promising results are reported from the statistical point of view.</dcterms:abstract>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dc:contributor>Huang, Wei</dc:contributor>
    <dcterms:title>A novel dementia diagnosis strategy on arterial spin labeling magnetic resonance images via pixel-wise partial volume correction and ranking</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Shen, Minmin</dc:creator>
    <dc:creator>Zhang, Peng</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:issued>2016-02</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T14:32:39Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen