Publikation:

So far away and yet so close : augmenting toponym disambiguation and similarity with text-based networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Geiß, Johanna
Gertz, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ZÜFLE, Andreas, ed. and others. GeoRich '16 : Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data. New York, NY: ACM, 2016, 2. ISBN 978-1-4503-4309-1. Available under: doi: 10.1145/2948649.2948651

Zusammenfassung

Place similarity has a central role in geographic information retrieval and geographic information systems, where spatial proximity is frequently just a poor substitute for semantic relatedness. For applications such as toponym disambiguation, alternative measures are thus required to answer the non-trivial question of place similarity in a given context. In this paper, we discuss a novel approach to the construction of a network of locations from unstructured text data. By deriving similarity scores based on the textual distance of toponyms, we obtain a kind of relatedness that encodes the importance of the co-occurrences of place mentions. Based on the text of the English Wikipedia, we construct and provide such a network of place similarities, including entity linking to Wikidata as an augmentation of the contained information. In an analysis of centrality, we explore the networks capability of capturing the similarity between places. An evaluation of the network for the task of toponym disambiguation on the AIDA CoNLL-YAGO dataset reveals a performance that is in line with state-of-the-art methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Location network, location similarity, toponym disambiguation, toponym extraction, centrality, Wikipedia, Wikidata

Konferenz

GeoRich '16 : Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data, 26. Juni 2016 - 1. Juli 2016, San Francisco, California, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPITZ, Andreas, Johanna GEISS, Michael GERTZ, 2016. So far away and yet so close : augmenting toponym disambiguation and similarity with text-based networks. GeoRich '16 : Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data. San Francisco, California, USA, 26. Juni 2016 - 1. Juli 2016. In: ZÜFLE, Andreas, ed. and others. GeoRich '16 : Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data. New York, NY: ACM, 2016, 2. ISBN 978-1-4503-4309-1. Available under: doi: 10.1145/2948649.2948651
BibTex
@inproceedings{Spitz2016close-55882,
  year={2016},
  doi={10.1145/2948649.2948651},
  title={So far away and yet so close : augmenting toponym disambiguation and similarity with text-based networks},
  isbn={978-1-4503-4309-1},
  publisher={ACM},
  address={New York, NY},
  booktitle={GeoRich '16 : Proceedings of the Third International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data},
  editor={Züfle, Andreas},
  author={Spitz, Andreas and Geiß, Johanna and Gertz, Michael},
  note={Article Number: 2}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55882">
    <dc:contributor>Gertz, Michael</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Place similarity has a central role in geographic information retrieval and geographic information systems, where spatial proximity is frequently just a poor substitute for semantic relatedness. For applications such as toponym disambiguation, alternative measures are thus required to answer the non-trivial question of place similarity in a given context. In this paper, we discuss a novel approach to the construction of a network of locations from unstructured text data. By deriving similarity scores based on the textual distance of toponyms, we obtain a kind of relatedness that encodes the importance of the co-occurrences of place mentions. Based on the text of the English Wikipedia, we construct and provide such a network of place similarities, including entity linking to Wikidata as an augmentation of the contained information. In an analysis of centrality, we explore the networks capability of capturing the similarity between places. An evaluation of the network for the task of toponym disambiguation on the AIDA CoNLL-YAGO dataset reveals a performance that is in line with state-of-the-art methods.</dcterms:abstract>
    <dc:creator>Gertz, Michael</dc:creator>
    <dc:creator>Geiß, Johanna</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>So far away and yet so close : augmenting toponym disambiguation and similarity with text-based networks</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-14T12:30:22Z</dc:date>
    <dcterms:issued>2016</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55882"/>
    <dc:contributor>Geiß, Johanna</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-14T12:30:22Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen