Publikation:

A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Honauer, Katrin
Battisti, Federica
Bok, Yunsu
Brizzi, Michele
Carli, Marco
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2017, pp. 1795-1812. eISSN 2160-7516. ISBN 978-1-5386-0733-6. Available under: doi: 10.1109/CVPRW.2017.226

Zusammenfassung

This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-of-the-art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Proceedings, 21. Juli 2017 - 26. Juli 2017, Honolulu, HI, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JOHANNSEN, Ole, Katrin HONAUER, Bastian GOLDLÜCKE, Anna ALPEROVICH, Federica BATTISTI, Yunsu BOK, Michele BRIZZI, Marco CARLI, Michael STRECKE, Antonin SULC, 2017. A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Proceedings. Honolulu, HI, USA, 21. Juli 2017 - 26. Juli 2017. In: CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2017, pp. 1795-1812. eISSN 2160-7516. ISBN 978-1-5386-0733-6. Available under: doi: 10.1109/CVPRW.2017.226
BibTex
@inproceedings{Johannsen2017-07Taxon-41509,
  year={2017},
  doi={10.1109/CVPRW.2017.226},
  title={A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms},
  isbn={978-1-5386-0733-6},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={CVPRW 2017 : 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops : proceedings : 21-26 July 2016, Honolulu, Hawaii},
  pages={1795--1812},
  author={Johannsen, Ole and Honauer, Katrin and Goldlücke, Bastian and Alperovich, Anna and Battisti, Federica and Bok, Yunsu and Brizzi, Michele and Carli, Marco and Strecke, Michael and Sulc, Antonin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41509">
    <dc:contributor>Battisti, Federica</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41509"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-of-the-art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.</dcterms:abstract>
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dc:creator>Strecke, Michael</dc:creator>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-21T08:50:44Z</dcterms:available>
    <dc:contributor>Sulc, Antonin</dc:contributor>
    <dc:contributor>Bok, Yunsu</dc:contributor>
    <dcterms:title>A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms</dcterms:title>
    <dc:creator>Honauer, Katrin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Brizzi, Michele</dc:contributor>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:contributor>Honauer, Katrin</dc:contributor>
    <dc:creator>Carli, Marco</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bok, Yunsu</dc:creator>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-21T08:50:44Z</dc:date>
    <dc:contributor>Strecke, Michael</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Brizzi, Michele</dc:creator>
    <dc:contributor>Carli, Marco</dc:contributor>
    <dc:creator>Battisti, Federica</dc:creator>
    <dcterms:issued>2017-07</dcterms:issued>
    <dc:creator>Sulc, Antonin</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen