Publikation: On critical Lp-differentiability of BD-maps
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Raiţă, Bogdan
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Revista Matemática Iberoamericana. European Mathematical Society (EMS). 2019, 35(7), pp. 2071-2078. ISSN 0213-2230. Available under: doi: 10.4171/rmi/1111
Zusammenfassung
We prove that functions of locally bounded deformation on Rn are Ln/(n−1)-differentiable Ln-almost everywhere. More generally, we show that this critical Lp-differentiability result holds for functions of locally bounded A-variation, provided that the first order, homogeneous differential operator A has finite dimensional null-space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Approximate differentiability, convolution operators, functions with bounded variation, functions with bounded deformation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GMEINEDER, Franz, Bogdan RAIŢĂ, 2019. On critical Lp-differentiability of BD-maps. In: Revista Matemática Iberoamericana. European Mathematical Society (EMS). 2019, 35(7), pp. 2071-2078. ISSN 0213-2230. Available under: doi: 10.4171/rmi/1111BibTex
@article{Gmeineder2019criti-54109, year={2019}, doi={10.4171/rmi/1111}, title={On critical L<sup>p</sup>-differentiability of BD-maps}, number={7}, volume={35}, issn={0213-2230}, journal={Revista Matemática Iberoamericana}, pages={2071--2078}, author={Gmeineder, Franz and Raiţă, Bogdan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54109"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-25T09:44:45Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Gmeineder, Franz</dc:creator> <dc:contributor>Raiţă, Bogdan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54109"/> <dcterms:title>On critical L<sup>p</sup>-differentiability of BD-maps</dcterms:title> <dcterms:issued>2019</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">We prove that functions of locally bounded deformation on R<sup>n</sup> are L<sup>n/(n−1)</sup>-differentiable L<sup>n</sup>-almost everywhere. More generally, we show that this critical L<sup>p</sup>-differentiability result holds for functions of locally bounded A-variation, provided that the first order, homogeneous differential operator A has finite dimensional null-space.</dcterms:abstract> <dc:contributor>Gmeineder, Franz</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-25T09:44:45Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Raiţă, Bogdan</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja