Publikation: The spin-coating process : analysis of the free boundary value problem
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, an accurate model of the spin-coating process is presented and investigated from the analytical point of view. More precisely, the spin-coating process is being described as a one-phase free boundary value problem for Newtonian fluids subject to surface tension and rotational effects. It is proved that for T > 0 there exists a unique, strong solution to this problem in (0, T) belonging to a certain regularity class provided the data and the speed of rotation are small enough in suitable norms. The strategy of the proof is based on a transformation of the free boundary value problem to a quasilinear evolution equation on a fixed domain. The keypoint for solving the latter equation is the so-called maximal regularity approach. In order to pursue in this direction one needs to determine the precise regularity classes for the associated inhomogeneous linearized equations. This is being achieved by applying the Newton polygon method to the boundary symbol.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Matthias GEISSERT, Matthias HIEBER, Jürgen SAAL, Okihiro SAWADA, 2011. The spin-coating process : analysis of the free boundary value problem. In: Communications in Partial Differential Equations. 2011, 36(7), pp. 1145-1192. ISSN 0360-5302. Available under: doi: 10.1080/03605302.2010.546469BibTex
@article{Denk2011spinc-19143, year={2011}, doi={10.1080/03605302.2010.546469}, title={The spin-coating process : analysis of the free boundary value problem}, number={7}, volume={36}, issn={0360-5302}, journal={Communications in Partial Differential Equations}, pages={1145--1192}, author={Denk, Robert and Geissert, Matthias and Hieber, Matthias and Saal, Jürgen and Sawada, Okihiro} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19143"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T09:20:41Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19143"/> <dc:creator>Sawada, Okihiro</dc:creator> <dc:contributor>Saal, Jürgen</dc:contributor> <dc:creator>Denk, Robert</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>The spin-coating process : analysis of the free boundary value problem</dcterms:title> <dc:creator>Hieber, Matthias</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T09:20:41Z</dc:date> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Geissert, Matthias</dc:contributor> <dc:contributor>Sawada, Okihiro</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper, an accurate model of the spin-coating process is presented and investigated from the analytical point of view. More precisely, the spin-coating process is being described as a one-phase free boundary value problem for Newtonian fluids subject to surface tension and rotational effects. It is proved that for T > 0 there exists a unique, strong solution to this problem in (0, T) belonging to a certain regularity class provided the data and the speed of rotation are small enough in suitable norms. The strategy of the proof is based on a transformation of the free boundary value problem to a quasilinear evolution equation on a fixed domain. The keypoint for solving the latter equation is the so-called maximal regularity approach. In order to pursue in this direction one needs to determine the precise regularity classes for the associated inhomogeneous linearized equations. This is being achieved by applying the Newton polygon method to the boundary symbol.</dcterms:abstract> <dc:contributor>Hieber, Matthias</dc:contributor> <dc:contributor>Denk, Robert</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Publ. in: Communications in Partial Differential Equations ; 36 (2011), 7. - pp. 1145-1192</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Saal, Jürgen</dc:creator> <dc:creator>Geissert, Matthias</dc:creator> </rdf:Description> </rdf:RDF>