Publikation:

Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Donohue, Sarah
Pätz, Cedrik

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings. Cham: Springer, 2018, pp. 75-86. Lecture Notes in Computer Science. 11191. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_7

Zusammenfassung

In the present study, we investigate the differences in brain signals of craving smokers, non-craving smokers, and non-smokers. To this end, we use data from resting-state EEG measurements to train predictive models to distinguish these three groups. We compare the results obtained from three simple models – majority class prediction, random guessing, and naive Bayes – as well as two neural network approaches. The first of these approaches uses a channel-wise model with dense layers, the second one uses cross-channel convolution. We therefore generate a benchmark on the given data set and show that there is a significant difference in the EEG signals of smokers and non-smokers.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Smoker, Craving, EEG Neural network, Classification

Konferenz

17th International Symposium, IDA 2018, 24. Okt. 2018 - 26. Okt. 2018, ’s-Hertogenbosch, The Netherlands
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DOELL, Christoph, Sarah DONOHUE, Cedrik PÄTZ, Christian BORGELT, 2018. Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers. 17th International Symposium, IDA 2018. ’s-Hertogenbosch, The Netherlands, 24. Okt. 2018 - 26. Okt. 2018. In: DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings. Cham: Springer, 2018, pp. 75-86. Lecture Notes in Computer Science. 11191. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_7
BibTex
@inproceedings{Doell2018-10-05Train-44689,
  year={2018},
  doi={10.1007/978-3-030-01768-2_7},
  title={Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers},
  number={11191},
  isbn={978-3-030-01767-5},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings},
  pages={75--86},
  editor={Duivesteijn, Wouter and Siebes, Arno and Ukkonen, Antti},
  author={Doell, Christoph and Donohue, Sarah and Pätz, Cedrik and Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44689">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T12:50:51Z</dcterms:available>
    <dc:creator>Donohue, Sarah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dc:creator>Doell, Christoph</dc:creator>
    <dcterms:abstract xml:lang="eng">In the present study, we investigate the differences in brain signals of craving smokers, non-craving smokers, and non-smokers. To this end, we use data from resting-state EEG measurements to train predictive models to distinguish these three groups. We compare the results obtained from three simple models – majority class prediction, random guessing, and naive Bayes – as well as two neural network approaches. The first of these approaches uses a channel-wise model with dense layers, the second one uses cross-channel convolution. We therefore generate a benchmark on the given data set and show that there is a significant difference in the EEG signals of smokers and non-smokers.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44689"/>
    <dc:creator>Pätz, Cedrik</dc:creator>
    <dcterms:title>Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers</dcterms:title>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dcterms:issued>2018-10-05</dcterms:issued>
    <dc:contributor>Doell, Christoph</dc:contributor>
    <dc:contributor>Pätz, Cedrik</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Donohue, Sarah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T12:50:51Z</dc:date>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen