Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Donohue, Sarah
Pätz, Cedrik
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings. Cham: Springer, 2018, pp. 75-86. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_7
Zusammenfassung

In the present study, we investigate the differences in brain signals of craving smokers, non-craving smokers, and non-smokers. To this end, we use data from resting-state EEG measurements to train predictive models to distinguish these three groups. We compare the results obtained from three simple models – majority class prediction, random guessing, and naive Bayes – as well as two neural network approaches. The first of these approaches uses a channel-wise model with dense layers, the second one uses cross-channel convolution. We therefore generate a benchmark on the given data set and show that there is a significant difference in the EEG signals of smokers and non-smokers.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Smoker, Craving, EEG Neural network, Classification
Konferenz
17th International Symposium, IDA 2018, 24. Okt. 2018 - 26. Okt. 2018, ’s-Hertogenbosch, The Netherlands
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690DOELL, Christoph, Sarah DONOHUE, Cedrik PÄTZ, Christian BORGELT, 2018. Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers. 17th International Symposium, IDA 2018. ’s-Hertogenbosch, The Netherlands, 24. Okt. 2018 - 26. Okt. 2018. In: DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings. Cham: Springer, 2018, pp. 75-86. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_7
BibTex
@inproceedings{Doell2018-10-05Train-44689,
  year={2018},
  doi={10.1007/978-3-030-01768-2_7},
  title={Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers},
  number={11191},
  isbn={978-3-030-01767-5},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings},
  pages={75--86},
  editor={Duivesteijn, Wouter and Siebes, Arno and Ukkonen, Antti},
  author={Doell, Christoph and Donohue, Sarah and Pätz, Cedrik and Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44689">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T12:50:51Z</dcterms:available>
    <dc:creator>Donohue, Sarah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dc:creator>Doell, Christoph</dc:creator>
    <dcterms:abstract xml:lang="eng">In the present study, we investigate the differences in brain signals of craving smokers, non-craving smokers, and non-smokers. To this end, we use data from resting-state EEG measurements to train predictive models to distinguish these three groups. We compare the results obtained from three simple models – majority class prediction, random guessing, and naive Bayes – as well as two neural network approaches. The first of these approaches uses a channel-wise model with dense layers, the second one uses cross-channel convolution. We therefore generate a benchmark on the given data set and show that there is a significant difference in the EEG signals of smokers and non-smokers.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44689"/>
    <dc:creator>Pätz, Cedrik</dc:creator>
    <dcterms:title>Training Neural Networks to Distinguish Craving Smokers, Non-craving Smokers, and Non-smokers</dcterms:title>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dcterms:issued>2018-10-05</dcterms:issued>
    <dc:contributor>Doell, Christoph</dc:contributor>
    <dc:contributor>Pätz, Cedrik</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Donohue, Sarah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T12:50:51Z</dc:date>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet