Publikation: Investigations on the Impact of Toxic Cyanobacteria on Fish as exemplified by the Coregonids in Lake Ammersee
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Toxic cyanobacteria affect organisms of all stages of development and trophic levels, especially aquatic organisms such as fish. Among the most toxic cyanobacteria are species of the genus Planktothrix, including Planktothrix rubescens. During the last decades, P. rubescens has become one of the predominant species of the phytoplankton community in several lakes in the pre-alpine regions. In some of those lakes (e.g. Lake Ammersee) the rise of P. rubescens has been observed to coincide with pronounced slumps in fishery yields bringing the professional fishery into existential difficulties. These slumps have primarily been characterised by prominent growth reduction of coregonids (Coregonus sp.), resulting in reduced fish fitness which appears to be associated with the regular disappearance of specific age groups of coregonid. As Lake Ammersee coregonids have repeatedly displayed blue coloured gut contents indicating coregonid contact with cyanobacteria, it appeared plausible that the challenge to this coregonid population might be causally related to the occurrence of toxic P. rubescens. The aim of the study was therefore to characterise the density, distribution and toxicity of P. rubescens in Lake Ammersee, to investigate environmental observations in controlled experimental exposure studies with respect to possible detrimental effects on coregonids and to assess the evidence linking P. rubescens exposure and adverse effects on feral coregonids in Lake Ammersee. Field studies demonstrated that P. rubescens was present during the entire observation period from 1999-2004, albeit at varying cell densities. Filaments were regularly distributed over the entire water column during winter and stratified in distinct metalimnic layers during summer. P. rubescens mass occurrence was demonstrated to be strongly influenced by water transparency, i.e. illumination in the metalimnion. Microcystins were detectable in 27 and 38 of 54 monthly seston samples via HPLC and ELISA measurements, respectively. The impact of P. rubescens on coregonids was examined in experimental exposure studies, where the environmentally observed P. rubescens cell densities and various forms of application were considered. Coregonids exposed to P. rubescens showed abnormalities representing a behavioural and physiological stress response. Histopathological alterations in liver, gastrointestinal tract and kidney suggested tissue damage and therefore alteration in normal organ function. The fact that these alterations were also immunopositive for microcystin indicated an uptake of microcystins and causality of tissue damage and the presence of microcystin. In addition, susceptibility to ectoparasitic infestation and increased mortality in exposed fish suggested these P. rubescens associated effects to impair fish fitness. The pathology and stress response of exposed coregonids was comparable across the different exposure experiments. Although, even low cell densities (≈1500 cells/ml) resulted in significant injury, the progression and severity of the observed adverse effects occurred in a dose-dependent manner, indicating that the higher the P. rubescens cell densities and hence microcystin concentrations, the more pronounced and earlier the onset of the adverse effects. P. rubescens cell densities greater than 1500 cells/ml were demonstrated to occur in Lake Ammersee during 47% of the 261 weeks observed, thus suggesting that Lake Ammersee coregonids are indeed regularly confronted with detrimental P. rubescens exposure situations. This is corroborated by field observations demonstrating P. rubescens filaments in gut contents of Lake Ammersee coregonids which additionally gives evidence that feral coregonids actually ingest P. rubescens. Field investigations demonstrated this exposure to result in an accumulation of P. rubescens components within the coregonid intestine, as the investigated fish showed a significant accumulation of cyanobacterial biliproteins explaining the prominent blue colouration of gut contents and implying possible coregonid exposure to P. rubescens toxins. Indeed, coregonids sampled during P. rubescens bloom episodes contained significant microcystin accumulation in the gut content, unambiguously demonstrating microcystin exposure of feral coregonids in Lake Ammersee. The detection of covalently-bound microcystin in liver tissue of Lake Ammersee coregonids furthermore demonstrates microcystins to traverse the ileal membrane and to accumulate in the liver. As corroborated by the experimental exposure studies, this makes substantial detrimental effects on the coregonids appear inevitable. In conclusion, prolonged occurrence of toxic P. rubescens can thus be expected to substantially affect feral coregonids. The current investigation hence substantiates the initial hypothesis of a causal relationship between mass occurrences of P. rubescens and challenged coregonid populations in pre-alpine lakes such as Lake Ammersee.
Zusammenfassung in einer weiteren Sprache
Giftige Cyanobakterien beeinträchtigen Organismen verschiedenster Entwicklungsstufen und trophischer Ebenen. Vor allem betroffen sind aquatische Organismen wie Fische. Zu den toxinreichsten Cyanobakterien gehören Arten der Gattung Planktothrix. Hierzu zählt auch Planktothrix rubescens, eine Cyanobakterienart die über die letzten Jahrzehnte im Besonderen in den Seen der Voralpenregionen zugenommen hat. An einigen Seen (z.B. am Ammersee) treten seit dem Erstarken von P. rubescens fischereiwirtschaftliche Probleme auf, die wesentlich auf Wachstumseinbrüche bei den Coregonenbeständen (Coregonus sp.; i.e. Renken, Felchen, etc.) zurückzuführen sind. Die Coregonen im Ammersee hatten wiederholt einen auffällig blau gefärbten Darminhalt. Eine Färbung die vermutlich von cyanobakteriellen Farbpigmenten verursacht wird und verdeutlicht, dass die Fische wahrscheinlich mit Cyanobakterien in Kontakt kommen. Es ist demzufolge nicht abwegig, dass die Probleme der Coregonen in kausalem Zusammenhang zum Auftreten giftiger P. rubescens-Filamente stehen könnten. Ziel des Dissertationsprojektes war es daher, das Aufkommen, die Verteilung und die Toxizität von P. rubescens im Ammersee über einen aussagekräftigen Zeitraum zu erfassen, in an die natürlichen Verhältnisse angelehnten Laborexperimente zu untersuchen, ob die vorgefundenen P. rubescens-Dichten Coregonenpopulationen beeinträchtigen und gesundheitlich schädigen können und zu prüfen, ob es Hinweise auf P. rubescens-Expositionen und dadurch verursachte Schädigungen wildlebender Coregonen im Ammersee gibt. Bei den von 1999 bis 2004 durchgeführten Beprobungen zeigte sich, dass P. rubescens-Filamente im Ammersee durchgehend, in unterschiedlicher Dichte vorhanden waren. P. rubescens erreichte regelmäßig im Sommer maximale Dichten im Bereich des Metalimnion. Darüber hinaus konnte P. rubescens auch während der winterlichen Vollzirkulation über den Wasserkörper verteilt nachgewiesen werden. Das P. rubescens-Aufkommen scheint wesentlich von der Transparenz des Wassers abzuhängen. Zudem scheint P. rubescens auch von regelmäßigen Phosphat-Auszehrung und den hohen Stickstoffkonzentrationen in dem re-oligotrophierten See zu profitieren. In 27 bzw. 38 von 54 Planktonproben konnten mittels HPLC und ELISA Toxinanalyse fischgiftige Microcystine nachgewiesen werden. Die Auswirkungen von P. rubescens auf Coregonen wurden in Laborexperimenten untersucht, wobei die im Ammersee erfassten P. rubescens-Dichten und verschiedene Expositionsformen berücksichtigt wurden. Die exponierten Coregonen offenbarten verschiedene Anzeichen für physiologischen Stress. Pathologische Veränderungen in der Leber, Niere und im Darm verdeutlichen Organschäden und Auswirkungen auf Organfunktionen. Microcystine konnten im Fischgewebe qualitativ, mit anti-Microcystin Antikörpern lokalisiert werden. Es zeigte sich ein kausaler Zusammenhang von Gewebeschäden und Microcystin-Einlagerungen. Eine erhöhte Empfindlichkeit gegenüber Ektoparasiten und eine erhöhte Mortalitätsrate deuten daraufhin, dass durch die Wirkung von P. rubescens auch die Kondition der experimentell exponierten Coregonen beeinträchtigt wurde. Insgesamt betrachtet war die Symptomatik der Auswirkungen in den verschiedenen Expositionsansätzen vergleichbar - die Intensität der Wirkung war aber dosisabhängig. Dies verdeutlicht, dass sich mit zunehmender P. rubescens-Zelldichte Effekte früher und deutlicher ausprägen. Doch auch bei relativ geringen P. rubescens Dichten (≈1500 Zellen/ml) zeigte sich eine fischgiftige Wirkung. P. rubescens-Zelldichten von mindestens 1500 Zellen/ml waren im Ammersee zur Hälfte der 261-wöchigen Beobachtungsperiode festzustellen. Die Coregonen im Ammersee sind also regelmäßig mit schädlichen P. rubescens-Zelldichten konfrontiert. Auch im See selbst ergaben sich Anhaltspunkte für eine P. rubescens-Exposition der Coregonen. So konnte gezeigt werden, dass die Fische P. rubescens-Filamente inkorporieren und verdauen. Dadurch werden im Darm die in den Filamenten enthaltenen Metabolite freigesetzt. Die Freisetzung von Phycocyanin bewirkt die Blaufärbung des Darminhalts und die Freisetzung der Microcystine verursacht eine Microcystin-Exposition der Coregonen. Da Microcystin stichprobenartig auch in Leberhomogenaten von Ammersee-Coregonen nachzuweisen war, ist wahrscheinlich, dass das im Darm freigesetzte Microcystin über das Darmepithel in den Organismus gelangen und sich auf den Gesundheitszustand und die Kondition der Coregonen auswirken kann. Man kann daher davon auszugehen, dass die in den Laborexperimenten aufgezeigten Microcystin-Schäden auch in den Fischen im See auftreten und sich dauerhafte P. rubescens-Vorkommen substanziell auf die Coregonen auswirken. Insgesamt betrachtet unterstützen die bisherigen Erkenntnisse damit die Vermutung, dass das anhaltende Aufkommen von P. rubescens eine wesentliche Ursache für den Wachstumseinbruch und die schlechte physiologische Kondition der Coregonen in Voralpenseen wie dem Ammersee ist.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ERNST, Bernhard, 2008. Investigations on the Impact of Toxic Cyanobacteria on Fish as exemplified by the Coregonids in Lake Ammersee [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Ernst2008Inves-6546, year={2008}, title={Investigations on the Impact of Toxic Cyanobacteria on Fish as exemplified by the Coregonids in Lake Ammersee}, author={Ernst, Bernhard}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6546"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:alternative>Untersuchungen zur Auswirkung Toxin-haltiger Cyanobakterien auf Fische am Beispiel der Coregonen im Ammersee</dcterms:alternative> <dcterms:abstract xml:lang="eng">Toxic cyanobacteria affect organisms of all stages of development and trophic levels, especially aquatic organisms such as fish. Among the most toxic cyanobacteria are species of the genus Planktothrix, including Planktothrix rubescens. During the last decades, P. rubescens has become one of the predominant species of the phytoplankton community in several lakes in the pre-alpine regions. In some of those lakes (e.g. Lake Ammersee) the rise of P. rubescens has been observed to coincide with pronounced slumps in fishery yields bringing the professional fishery into existential difficulties. These slumps have primarily been characterised by prominent growth reduction of coregonids (Coregonus sp.), resulting in reduced fish fitness which appears to be associated with the regular disappearance of specific age groups of coregonid. As Lake Ammersee coregonids have repeatedly displayed blue coloured gut contents indicating coregonid contact with cyanobacteria, it appeared plausible that the challenge to this coregonid population might be causally related to the occurrence of toxic P. rubescens. The aim of the study was therefore to characterise the density, distribution and toxicity of P. rubescens in Lake Ammersee, to investigate environmental observations in controlled experimental exposure studies with respect to possible detrimental effects on coregonids and to assess the evidence linking P. rubescens exposure and adverse effects on feral coregonids in Lake Ammersee. Field studies demonstrated that P. rubescens was present during the entire observation period from 1999-2004, albeit at varying cell densities. Filaments were regularly distributed over the entire water column during winter and stratified in distinct metalimnic layers during summer. P. rubescens mass occurrence was demonstrated to be strongly influenced by water transparency, i.e. illumination in the metalimnion. Microcystins were detectable in 27 and 38 of 54 monthly seston samples via HPLC and ELISA measurements, respectively. The impact of P. rubescens on coregonids was examined in experimental exposure studies, where the environmentally observed P. rubescens cell densities and various forms of application were considered. Coregonids exposed to P. rubescens showed abnormalities representing a behavioural and physiological stress response. Histopathological alterations in liver, gastrointestinal tract and kidney suggested tissue damage and therefore alteration in normal organ function. The fact that these alterations were also immunopositive for microcystin indicated an uptake of microcystins and causality of tissue damage and the presence of microcystin. In addition, susceptibility to ectoparasitic infestation and increased mortality in exposed fish suggested these P. rubescens associated effects to impair fish fitness. The pathology and stress response of exposed coregonids was comparable across the different exposure experiments. Although, even low cell densities (≈1500 cells/ml) resulted in significant injury, the progression and severity of the observed adverse effects occurred in a dose-dependent manner, indicating that the higher the P. rubescens cell densities and hence microcystin concentrations, the more pronounced and earlier the onset of the adverse effects. P. rubescens cell densities greater than 1500 cells/ml were demonstrated to occur in Lake Ammersee during 47% of the 261 weeks observed, thus suggesting that Lake Ammersee coregonids are indeed regularly confronted with detrimental P. rubescens exposure situations. This is corroborated by field observations demonstrating P. rubescens filaments in gut contents of Lake Ammersee coregonids which additionally gives evidence that feral coregonids actually ingest P. rubescens. Field investigations demonstrated this exposure to result in an accumulation of P. rubescens components within the coregonid intestine, as the investigated fish showed a significant accumulation of cyanobacterial biliproteins explaining the prominent blue colouration of gut contents and implying possible coregonid exposure to P. rubescens toxins. Indeed, coregonids sampled during P. rubescens bloom episodes contained significant microcystin accumulation in the gut content, unambiguously demonstrating microcystin exposure of feral coregonids in Lake Ammersee. The detection of covalently-bound microcystin in liver tissue of Lake Ammersee coregonids furthermore demonstrates microcystins to traverse the ileal membrane and to accumulate in the liver. As corroborated by the experimental exposure studies, this makes substantial detrimental effects on the coregonids appear inevitable. In conclusion, prolonged occurrence of toxic P. rubescens can thus be expected to substantially affect feral coregonids. The current investigation hence substantiates the initial hypothesis of a causal relationship between mass occurrences of P. rubescens and challenged coregonid populations in pre-alpine lakes such as Lake Ammersee.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:27:18Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2008</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:27:18Z</dcterms:available> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6546"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6546/1/Diss_Ernst.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6546/1/Diss_Ernst.pdf"/> <dc:format>application/pdf</dc:format> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Investigations on the Impact of Toxic Cyanobacteria on Fish as exemplified by the Coregonids in Lake Ammersee</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Ernst, Bernhard</dc:contributor> <dc:creator>Ernst, Bernhard</dc:creator> </rdf:Description> </rdf:RDF>