Newton's polygon in the theory of singular perturbations of boundary value problems

Lade...
Vorschaubild
Dateien
rd21.pdf
rd21.pdfGröße: 198.42 KBDownloads: 81
Datum
2001
Autor:innen
Volevič, Leonid R.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In this paper we discuss ellipticity conditions for some parameter-dependent boundary value problems which do not satisfy the Agmon-Agranovich-Vishik condition of ellipticity with parameter. The appropriate definition of ellipticity uses the concept of the Newton polygon. For the corresponding boundary value problems with small parameter we construct the formal asymptotic solution, thus explaining the nature of the Shapiro-Lopatinskii condition for these problems.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690DENK, Robert, Leonid R. VOLEVIČ, 2001. Newton's polygon in the theory of singular perturbations of boundary value problems. In: Functional differential equations. 2001, 8, pp. 147-161
BibTex
@article{Denk2001Newto-720,
  year={2001},
  title={Newton's polygon in the theory of singular perturbations of boundary value problems},
  volume={8},
  journal={Functional differential equations},
  pages={147--161},
  author={Denk, Robert and Volevič, Leonid R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/720">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dcterms:available>
    <dcterms:issued>2001</dcterms:issued>
    <dcterms:title>Newton's polygon in the theory of singular perturbations of boundary value problems</dcterms:title>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:creator>Volevič, Leonid R.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/720/1/rd21.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Denk, Robert</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Denk, Robert</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In this paper we discuss ellipticity conditions for some parameter-dependent boundary value problems which do not satisfy the Agmon-Agranovich-Vishik condition of ellipticity with parameter. The appropriate definition of ellipticity uses the concept of the Newton polygon. For the corresponding boundary value problems with small parameter we construct the formal asymptotic solution, thus explaining the nature of the Shapiro-Lopatinskii condition for these problems.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>First publ. in: Functional differential equations 8 (2001), pp. 147-161</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/720/1/rd21.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dc:date>
    <dc:contributor>Volevič, Leonid R.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/720"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen