Publikation:

Evaluation of the global performance of eight in silico skin sensitization models using human data

Lade...
Vorschaubild

Dateien

Hartung_2-1onbwkkrhgxdt1.pdf
Hartung_2-1onbwkkrhgxdt1.pdfGröße: 3.23 MBDownloads: 94

Datum

2021

Autor:innen

Golden, Emily
Macmillan, Donna S.
Dameron, Greg
Kern, Petra
Maertens, Alexandra

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2021, 38(1), pp. 33-48. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1911261

Zusammenfassung

Allergic contact dermatitis, or the clinical manifestation of skin sensitization, is a leading occupational hazard. Several testing approaches exist to assess skin sensitization, but in silico models are perhaps the most advantageous due to their high speed and low-cost results. Many in silico skin sensitization models exist, though many have only been tested against results from animal studies (e.g., LLNA); this creates uncertainty in human skin sensitization assessments in both a screening and regulatory context. This project’s aim was to evaluate the accuracy of eight in silico skin sensitization models against two human data sets: one highly curated (Basketter et al., 2014) and one screening level (HSDB). The binary skin sen­sitization status of each chemical in each of the two data sets was compared to the prediction from eight in silico skin sensitization tools (Toxtree, PredSkin, OECD’s QSAR Toolbox, UL’s REACHAcross™, Danish QSAR Database, TIMES-SS, and Lhasa Limited’s Derek Nexus). Models were assessed for coverage, accuracy, sensitivity, and specificity, as well as optimization features (e.g., probability of accuracy, applicability domain, etc.), if available. While there was a wide range of sensitivity and specificity, the models generally performed comparably to the LLNA in predicting human skin sensitization status (i.e., approximately 70-80% accuracy). Additionally, the models did not mispredict the same com­pounds, suggesting there might be an advantage in combining models. In silico skin sensitization models offer accurate and useful insights in a screening context; however, further improvements are necessary so these models may be con­sidered fully reliable for regulatory applications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

QSAR; read-across; skin sensitization; structural alerts

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GOLDEN, Emily, Donna S. MACMILLAN, Greg DAMERON, Petra KERN, Thomas HARTUNG, Alexandra MAERTENS, 2021. Evaluation of the global performance of eight in silico skin sensitization models using human data. In: Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2021, 38(1), pp. 33-48. ISSN 0946-7785. eISSN 1868-8551. Available under: doi: 10.14573/altex.1911261
BibTex
@article{Golden2021Evalu-57028,
  year={2021},
  doi={10.14573/altex.1911261},
  title={Evaluation of the global performance of eight in silico skin sensitization models using human data},
  number={1},
  volume={38},
  issn={0946-7785},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={33--48},
  author={Golden, Emily and Macmillan, Donna S. and Dameron, Greg and Kern, Petra and Hartung, Thomas and Maertens, Alexandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57028">
    <dcterms:issued>2021</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57028"/>
    <dc:contributor>Dameron, Greg</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57028/3/Hartung_2-1onbwkkrhgxdt1.pdf"/>
    <dc:contributor>Golden, Emily</dc:contributor>
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Dameron, Greg</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Allergic contact dermatitis, or the clinical manifestation of skin sensitization, is a leading occupational hazard. Several testing approaches exist to assess skin sensitization, but in silico models are perhaps the most advantageous due to their high speed and low-cost results. Many in silico skin sensitization models exist, though many have only been tested against results from animal studies (e.g., LLNA); this creates uncertainty in human skin sensitization assessments in both a screening and regulatory context. This project’s aim was to evaluate the accuracy of eight in silico skin sensitization models against two human data sets: one highly curated (Basketter et al., 2014) and one screening level (HSDB). The binary skin sen­sitization status of each chemical in each of the two data sets was compared to the prediction from eight in silico skin sensitization tools (Toxtree, PredSkin, OECD’s QSAR Toolbox, UL’s REACHAcross™, Danish QSAR Database, TIMES-SS, and Lhasa Limited’s Derek Nexus). Models were assessed for coverage, accuracy, sensitivity, and specificity, as well as optimization features (e.g., probability of accuracy, applicability domain, etc.), if available. While there was a wide range of sensitivity and specificity, the models generally performed comparably to the LLNA in predicting human skin sensitization status (i.e., approximately 70-80% accuracy). Additionally, the models did not mispredict the same com­pounds, suggesting there might be an advantage in combining models. In silico skin sensitization models offer accurate and useful insights in a screening context; however, further improvements are necessary so these models may be con­sidered fully reliable for regulatory applications.</dcterms:abstract>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dc:creator>Golden, Emily</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T06:43:27Z</dc:date>
    <dc:creator>Kern, Petra</dc:creator>
    <dcterms:title>Evaluation of the global performance of eight in silico skin sensitization models using human data</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T06:43:27Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kern, Petra</dc:contributor>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57028/3/Hartung_2-1onbwkkrhgxdt1.pdf"/>
    <dc:contributor>Macmillan, Donna S.</dc:contributor>
    <dc:creator>Macmillan, Donna S.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen