Publikation:

Event identification for local areas using social media streaming data

Lade...
Vorschaubild

Dateien

Weiler_243421.pdf
Weiler_243421.pdfGröße: 468.42 KBDownloads: 491

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13. New York, New York, USA: ACM Press, 2013, pp. 1-6. ISBN 978-1-4503-2191-4. Available under: doi: 10.1145/2484702.2484703

Zusammenfassung

Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

the ACM SIGMOD Workshop, 22. Juni 2013 - 27. Juni 2013, New York, New York
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Marc H. SCHOLL, Franz WANNER, Christian ROHRDANTZ, 2013. Event identification for local areas using social media streaming data. the ACM SIGMOD Workshop. New York, New York, 22. Juni 2013 - 27. Juni 2013. In: Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13. New York, New York, USA: ACM Press, 2013, pp. 1-6. ISBN 978-1-4503-2191-4. Available under: doi: 10.1145/2484702.2484703
BibTex
@inproceedings{Weiler2013Event-24342,
  year={2013},
  doi={10.1145/2484702.2484703},
  title={Event identification for local areas using social media streaming data},
  isbn={978-1-4503-2191-4},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13},
  pages={1--6},
  author={Weiler, Andreas and Scholl, Marc H. and Wanner, Franz and Rohrdantz, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24342">
    <dc:creator>Weiler, Andreas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24342"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24342/2/Weiler_243421.pdf"/>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dcterms:bibliographicCitation>Proceedings of the 3rd ACM SIGMOD Workshop on Databases and Social Networks : DBSocial 2013; New York, NY, USA, June 23 2013 / Kristen LeFevre, Ashwin Machanavajjhala, Adam Silberstein (Conference Chairs). - New York, NY : ACM, 2013. - S. 1-6. - ISBN 978-1-4503-2191-4</dcterms:bibliographicCitation>
    <dcterms:abstract xml:lang="eng">Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.</dcterms:abstract>
    <dcterms:issued>2013</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:48:59Z</dc:date>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Wanner, Franz</dc:creator>
    <dcterms:title>Event identification for local areas using social media streaming data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:48:59Z</dcterms:available>
    <dc:contributor>Wanner, Franz</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24342/2/Weiler_243421.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen