Publikation: Event identification for local areas using social media streaming data
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Marc H. SCHOLL, Franz WANNER, Christian ROHRDANTZ, 2013. Event identification for local areas using social media streaming data. the ACM SIGMOD Workshop. New York, New York, 22. Juni 2013 - 27. Juni 2013. In: Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13. New York, New York, USA: ACM Press, 2013, pp. 1-6. ISBN 978-1-4503-2191-4. Available under: doi: 10.1145/2484702.2484703BibTex
@inproceedings{Weiler2013Event-24342, year={2013}, doi={10.1145/2484702.2484703}, title={Event identification for local areas using social media streaming data}, isbn={978-1-4503-2191-4}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13}, pages={1--6}, author={Weiler, Andreas and Scholl, Marc H. and Wanner, Franz and Rohrdantz, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24342"> <dc:creator>Weiler, Andreas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24342"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24342/2/Weiler_243421.pdf"/> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:bibliographicCitation>Proceedings of the 3rd ACM SIGMOD Workshop on Databases and Social Networks : DBSocial 2013; New York, NY, USA, June 23 2013 / Kristen LeFevre, Ashwin Machanavajjhala, Adam Silberstein (Conference Chairs). - New York, NY : ACM, 2013. - S. 1-6. - ISBN 978-1-4503-2191-4</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.</dcterms:abstract> <dcterms:issued>2013</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:48:59Z</dc:date> <dc:creator>Scholl, Marc H.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Wanner, Franz</dc:creator> <dcterms:title>Event identification for local areas using social media streaming data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:contributor>Weiler, Andreas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:48:59Z</dcterms:available> <dc:contributor>Wanner, Franz</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24342/2/Weiler_243421.pdf"/> </rdf:Description> </rdf:RDF>