Event identification for local areas using social media streaming data

Lade...
Vorschaubild
Dateien
Weiler_243421.pdf
Weiler_243421.pdfGröße: 468.42 KBDownloads: 422
Datum
2013
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13. New York, New York, USA: ACM Press, 2013, pp. 1-6. ISBN 978-1-4503-2191-4. Available under: doi: 10.1145/2484702.2484703
Zusammenfassung

Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
the ACM SIGMOD Workshop, 22. Juni 2013 - 27. Juni 2013, New York, New York
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WEILER, Andreas, Marc H. SCHOLL, Franz WANNER, Christian ROHRDANTZ, 2013. Event identification for local areas using social media streaming data. the ACM SIGMOD Workshop. New York, New York, 22. Juni 2013 - 27. Juni 2013. In: Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13. New York, New York, USA: ACM Press, 2013, pp. 1-6. ISBN 978-1-4503-2191-4. Available under: doi: 10.1145/2484702.2484703
BibTex
@inproceedings{Weiler2013Event-24342,
  year={2013},
  doi={10.1145/2484702.2484703},
  title={Event identification for local areas using social media streaming data},
  isbn={978-1-4503-2191-4},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the ACM SIGMOD Workshop on Databases and Social Networks - DBSocial '13},
  pages={1--6},
  author={Weiler, Andreas and Scholl, Marc H. and Wanner, Franz and Rohrdantz, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24342">
    <dc:creator>Weiler, Andreas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24342"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24342/2/Weiler_243421.pdf"/>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dcterms:bibliographicCitation>Proceedings of the 3rd ACM SIGMOD Workshop on Databases and Social Networks : DBSocial 2013; New York, NY, USA, June 23 2013 / Kristen LeFevre, Ashwin Machanavajjhala, Adam Silberstein (Conference Chairs). - New York, NY : ACM, 2013. - S. 1-6. - ISBN 978-1-4503-2191-4</dcterms:bibliographicCitation>
    <dcterms:abstract xml:lang="eng">Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.</dcterms:abstract>
    <dcterms:issued>2013</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:48:59Z</dc:date>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Wanner, Franz</dc:creator>
    <dcterms:title>Event identification for local areas using social media streaming data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-28T14:48:59Z</dcterms:available>
    <dc:contributor>Wanner, Franz</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24342/2/Weiler_243421.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet