Publikation:

From Movement to Events : Improving Soccer Match Annotations

Lade...
Vorschaubild

Dateien

Stein_2-1obn1hbizozoa1.pdf
Stein_2-1obn1hbizozoa1.pdfGröße: 285.7 KBDownloads: 736

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KOMPATSIARIS, Ioannis, ed., Benoit HUET, ed., Vasileios MEZARIS, ed., Cathal GURRIN, ed., Wen-Huang CHENG, ed., Stefanos VROCHIDIS, ed.. MultiMedia Modeling : 25th International Conference, MMM 2019, Proceedings, Part I. Cham: Springer International Publishing, 2019, pp. 130-142. Lecture Notes in Computer Science. 11295. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-05709-1. Available under: doi: 10.1007/978-3-030-05710-7_11

Zusammenfassung

Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual analytics, Sport analytics, Event analysis

Konferenz

MultiMedia Modeling : 25th International Conference, 8. Jan. 2019 - 11. Jan. 2019, Thessaloniki, Greece
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STEIN, Manuel, Daniel SEEBACHER, Tassilo KARGE, Tom POLK, Michael GROSSNIKLAUS, Daniel A. KEIM, 2019. From Movement to Events : Improving Soccer Match Annotations. MultiMedia Modeling : 25th International Conference. Thessaloniki, Greece, 8. Jan. 2019 - 11. Jan. 2019. In: KOMPATSIARIS, Ioannis, ed., Benoit HUET, ed., Vasileios MEZARIS, ed., Cathal GURRIN, ed., Wen-Huang CHENG, ed., Stefanos VROCHIDIS, ed.. MultiMedia Modeling : 25th International Conference, MMM 2019, Proceedings, Part I. Cham: Springer International Publishing, 2019, pp. 130-142. Lecture Notes in Computer Science. 11295. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-05709-1. Available under: doi: 10.1007/978-3-030-05710-7_11
BibTex
@inproceedings{Stein2019Movem-44519,
  year={2019},
  doi={10.1007/978-3-030-05710-7_11},
  title={From Movement to Events : Improving Soccer Match Annotations},
  number={11295},
  isbn={978-3-030-05709-1},
  issn={0302-9743},
  publisher={Springer International Publishing},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={MultiMedia Modeling : 25th International Conference, MMM 2019, Proceedings, Part I},
  pages={130--142},
  editor={Kompatsiaris, Ioannis and Huet, Benoit and Mezaris, Vasileios and Gurrin, Cathal and Cheng, Wen-Huang and Vrochidis, Stefanos},
  author={Stein, Manuel and Seebacher, Daniel and Karge, Tassilo and Polk, Tom and Grossniklaus, Michael and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44519">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44519/1/Stein_2-1obn1hbizozoa1.pdf"/>
    <dcterms:title>From Movement to Events : Improving Soccer Match Annotations</dcterms:title>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Polk, Tom</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44519/1/Stein_2-1obn1hbizozoa1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Karge, Tassilo</dc:creator>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:12:49Z</dcterms:available>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Polk, Tom</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:12:49Z</dc:date>
    <dcterms:abstract xml:lang="eng">Match analysis has become an important task in everyday work at professional soccer clubs in order to improve team performance. Video analysts regularly spend up to several days analyzing and summarizing matches based on tracked and annotated match data. Although there already exists extensive capabilities to track the movement of players and the ball from multimedia data sources such as video recordings, there is no capability to sufficiently detect dynamic and complex events within these data. As a consequence, analysts have to rely on manually created annotations, which are very time-consuming and expensive to create. We propose a novel method for the semi-automatic definition and detection of events based entirely on movement data of players and the ball. Incorporating Allen’s interval algebra into a visual analytics system, we enable analysts to visually define as well as search for complex, hierarchical events. We demonstrate the usefulness of our approach by quantitatively comparing our automatically detected events with manually annotated events from a professional data provider as well as several expert interviews. The results of our evaluation show that the required annotation time for complete matches by using our system can be reduced to a few seconds while achieving a similar level of performance.</dcterms:abstract>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Karge, Tassilo</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44519"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen