Publikation:

Multi-objective Optimal Control of a Pandemic Model for Covid-19 Management

Lade...
Vorschaubild

Dateien

Gebert_2-1o914rtznyx7k5.pdf
Gebert_2-1o914rtznyx7k5.pdfGröße: 773.46 KBDownloads: 146

Datum

2022

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Decision makers face the need of making difficult decisions with no clear, favorable path on a regular basis. This is illustrated especially impressive since the start of the Covid-19 pandemic in the beginning of 2020. These decisions consist often of different, contradictory objectives. Therefore there is a need for easy and fast applicable tools to find optimal solutions. A possible way to decide multi-objective problems efficiently and scientifically is presented by this work, exemplary on the use of different countermeasures in the pandemic management in Berlin, Germany, in November 2020. First a model of ordinary differential equations (ODE) is introduced to simulate the pandemic proceeding. This model is then run for different countermeasures and a regression with respect to these is made. Consequently it is possible to forecast the pandemic behaviour in dependency of the use of countermeasures. In a second step a variance of the subdivision algorithm is introduced, combining the approaches from [Del04] and [Ser06] as appropriate tool to find optimal solutions for contradictory objectives with respect to the use of countermeasures. This tool is then applied to an exemplary objective function in order to illustrate the use of the subdivision algorithm and how decision making can be based upon its findings. This work is highly influenced by the work of Wulkow et al. [Wul21], as it recreates their work mostly. However, it delivers more mathematical background for the underlying mechanism as well as a more detailed view of how to apply the different tools correctly and can therefore be understood as an extended instruction to apply multiobjective optimization to practical decision making.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GEBERT, Jens, 2022. Multi-objective Optimal Control of a Pandemic Model for Covid-19 Management [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Gebert2022Multi-56929,
  year={2022},
  title={Multi-objective Optimal Control of a Pandemic Model for Covid-19 Management},
  address={Konstanz},
  school={Universität Konstanz},
  author={Gebert, Jens}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56929">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-22T07:17:38Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56929/3/Gebert_2-1o914rtznyx7k5.pdf"/>
    <dcterms:abstract xml:lang="eng">Decision makers face the need of making difficult decisions with no clear, favorable path on a regular basis. This is illustrated especially impressive since the start of the Covid-19 pandemic in the beginning of 2020. These decisions consist often of different, contradictory objectives. Therefore there is a need for easy and fast applicable tools to find optimal solutions. A possible way to decide multi-objective problems efficiently and scientifically is presented by this work, exemplary on the use of different countermeasures in the pandemic management in Berlin, Germany, in November 2020. First a model of ordinary differential equations (ODE) is introduced to simulate the pandemic proceeding. This model is then run for different countermeasures and a regression with respect to these is made. Consequently it is possible to forecast the pandemic behaviour in dependency of the use of countermeasures. In a second step a variance of the subdivision algorithm is introduced, combining the approaches from [Del04] and [Ser06] as appropriate tool to find optimal solutions for contradictory objectives with respect to the use of countermeasures. This tool is then applied to an exemplary objective function in order to illustrate the use of the subdivision algorithm and how decision making can be based upon its findings. This work is highly influenced by the work of Wulkow et al. [Wul21], as it recreates their work mostly. However, it delivers more mathematical background for the underlying mechanism as well as a more detailed view of how to apply the different tools correctly and can therefore be understood as an extended instruction to apply multiobjective optimization to practical decision making.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Multi-objective Optimal Control of a Pandemic Model for Covid-19 Management</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-22T07:17:38Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56929"/>
    <dc:contributor>Gebert, Jens</dc:contributor>
    <dc:creator>Gebert, Jens</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56929/3/Gebert_2-1o914rtznyx7k5.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2022
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen