Publikation: Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a set of tools for semi-supervised classification of ecosystem health in Meso-American tropical dry forest, one of the most highly endangered habitats on Earth. Audio recordings were collected from 15-year-old, 30-year-old and old growth tropical dry forest plots in the Guanacaste Conservation Area, Costa Rica, on both nutrient rich and nutrient poor soils. The goals of this project were to classify the overall health of the regenerating forests using markers of biodiversity. Semi-supervised machine learning and digital signal processing techniques were explored and tested for their ability to detect species and events in the audio recordings. Furthermore, multi-recorder setups within the same vicinity were able to improve detection rates and accuracy by enabling localization of audio events. Variations in species' and rainforest ambient noise detection rates over time were hypothesized to correlate to biodiversity and hence the health of the rainforest. By comparing levels of biodiversity measured in this manner between old growth and young dry forest plots, we hope to determine the effectiveness of reforestation techniques and identify key environmental factors shaping the recovery of forest ecosystems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TREUER, Tim, Jaan ALTOSAAR, Andrew HARTNETT, Colin TWOMEY, Andy DOBSON, David WILCOVE, Iain D. COUZIN, 2014. Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings. In: The Journal of the Acoustical Society of America. 2014, 135(4), 2368. ISSN 0001-4966. eISSN 1520-8524. Available under: doi: 10.1121/1.4877807BibTex
@article{Treuer2014Machi-31091, year={2014}, doi={10.1121/1.4877807}, title={Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings}, number={4}, volume={135}, issn={0001-4966}, journal={The Journal of the Acoustical Society of America}, author={Treuer, Tim and Altosaar, Jaan and Hartnett, Andrew and Twomey, Colin and Dobson, Andy and Wilcove, David and Couzin, Iain D.}, note={Article Number: 2368} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31091"> <dc:contributor>Treuer, Tim</dc:contributor> <dc:contributor>Wilcove, David</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T08:51:12Z</dcterms:available> <dc:creator>Treuer, Tim</dc:creator> <dc:contributor>Hartnett, Andrew</dc:contributor> <dc:creator>Wilcove, David</dc:creator> <dc:contributor>Altosaar, Jaan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Hartnett, Andrew</dc:creator> <dc:creator>Couzin, Iain D.</dc:creator> <dcterms:title>Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings</dcterms:title> <dc:creator>Dobson, Andy</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31091"/> <dc:contributor>Twomey, Colin</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T08:51:12Z</dc:date> <dcterms:abstract xml:lang="eng">We present a set of tools for semi-supervised classification of ecosystem health in Meso-American tropical dry forest, one of the most highly endangered habitats on Earth. Audio recordings were collected from 15-year-old, 30-year-old and old growth tropical dry forest plots in the Guanacaste Conservation Area, Costa Rica, on both nutrient rich and nutrient poor soils. The goals of this project were to classify the overall health of the regenerating forests using markers of biodiversity. Semi-supervised machine learning and digital signal processing techniques were explored and tested for their ability to detect species and events in the audio recordings. Furthermore, multi-recorder setups within the same vicinity were able to improve detection rates and accuracy by enabling localization of audio events. Variations in species' and rainforest ambient noise detection rates over time were hypothesized to correlate to biodiversity and hence the health of the rainforest. By comparing levels of biodiversity measured in this manner between old growth and young dry forest plots, we hope to determine the effectiveness of reforestation techniques and identify key environmental factors shaping the recovery of forest ecosystems.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Altosaar, Jaan</dc:creator> <dc:contributor>Dobson, Andy</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:creator>Twomey, Colin</dc:creator> <dc:contributor>Couzin, Iain D.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>