Publikation:

Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Treuer, Tim
Altosaar, Jaan
Hartnett, Andrew
Twomey, Colin
Dobson, Andy
Wilcove, David

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Journal of the Acoustical Society of America. 2014, 135(4), 2368. ISSN 0001-4966. eISSN 1520-8524. Available under: doi: 10.1121/1.4877807

Zusammenfassung

We present a set of tools for semi-supervised classification of ecosystem health in Meso-American tropical dry forest, one of the most highly endangered habitats on Earth. Audio recordings were collected from 15-year-old, 30-year-old and old growth tropical dry forest plots in the Guanacaste Conservation Area, Costa Rica, on both nutrient rich and nutrient poor soils. The goals of this project were to classify the overall health of the regenerating forests using markers of biodiversity. Semi-supervised machine learning and digital signal processing techniques were explored and tested for their ability to detect species and events in the audio recordings. Furthermore, multi-recorder setups within the same vicinity were able to improve detection rates and accuracy by enabling localization of audio events. Variations in species' and rainforest ambient noise detection rates over time were hypothesized to correlate to biodiversity and hence the health of the rainforest. By comparing levels of biodiversity measured in this manner between old growth and young dry forest plots, we hope to determine the effectiveness of reforestation techniques and identify key environmental factors shaping the recovery of forest ecosystems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TREUER, Tim, Jaan ALTOSAAR, Andrew HARTNETT, Colin TWOMEY, Andy DOBSON, David WILCOVE, Iain D. COUZIN, 2014. Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings. In: The Journal of the Acoustical Society of America. 2014, 135(4), 2368. ISSN 0001-4966. eISSN 1520-8524. Available under: doi: 10.1121/1.4877807
BibTex
@article{Treuer2014Machi-31091,
  year={2014},
  doi={10.1121/1.4877807},
  title={Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings},
  number={4},
  volume={135},
  issn={0001-4966},
  journal={The Journal of the Acoustical Society of America},
  author={Treuer, Tim and Altosaar, Jaan and Hartnett, Andrew and Twomey, Colin and Dobson, Andy and Wilcove, David and Couzin, Iain D.},
  note={Article Number: 2368}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31091">
    <dc:contributor>Treuer, Tim</dc:contributor>
    <dc:contributor>Wilcove, David</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T08:51:12Z</dcterms:available>
    <dc:creator>Treuer, Tim</dc:creator>
    <dc:contributor>Hartnett, Andrew</dc:contributor>
    <dc:creator>Wilcove, David</dc:creator>
    <dc:contributor>Altosaar, Jaan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hartnett, Andrew</dc:creator>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dcterms:title>Machine learning an audio taxonomy : quantifying biodiversity and habitat recovery through rainforest audio recordings</dcterms:title>
    <dc:creator>Dobson, Andy</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31091"/>
    <dc:contributor>Twomey, Colin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T08:51:12Z</dc:date>
    <dcterms:abstract xml:lang="eng">We present a set of tools for semi-supervised classification of ecosystem health in Meso-American tropical dry forest, one of the most highly endangered habitats on Earth. Audio recordings were collected from 15-year-old, 30-year-old and old growth tropical dry forest plots in the Guanacaste Conservation Area, Costa Rica, on both nutrient rich and nutrient poor soils. The goals of this project were to classify the overall health of the regenerating forests using markers of biodiversity. Semi-supervised machine learning and digital signal processing techniques were explored and tested for their ability to detect species and events in the audio recordings. Furthermore, multi-recorder setups within the same vicinity were able to improve detection rates and accuracy by enabling localization of audio events. Variations in species' and rainforest ambient noise detection rates over time were hypothesized to correlate to biodiversity and hence the health of the rainforest. By comparing levels of biodiversity measured in this manner between old growth and young dry forest plots, we hope to determine the effectiveness of reforestation techniques and identify key environmental factors shaping the recovery of forest ecosystems.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Altosaar, Jaan</dc:creator>
    <dc:contributor>Dobson, Andy</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Twomey, Colin</dc:creator>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen