Publikation: Probabilistic Proximity Search Algorithms Based on Compact Partitions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the relevant objects at a fraction of the cost of the exact algorithm. These algorithms are welcome in most applications because resorting to metric space searching already involves a fuzziness in the retrieval requirements. In this paper, we push further in this direction by developing probabilistic algorithms on data structures whose exact versions are the best for high dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We give new insights on the problem and propose a novel view based on time-bounded searching. We also propose an experimental framework for probabilistic algorithms that permits comparing them in offline mode.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUSTOS CÁRDENAS, Benjamin Eugenio, Gonzalo NAVARRO, 2004. Probabilistic Proximity Search Algorithms Based on Compact Partitions. In: Journal of discrete algorithms. 2004, 2(1), pp. 115-134. Available under: doi: 10.1016/S1570-8667(03)00067-4BibTex
@article{BustosCardenas2004Proba-5539, year={2004}, doi={10.1016/S1570-8667(03)00067-4}, title={Probabilistic Proximity Search Algorithms Based on Compact Partitions}, number={1}, volume={2}, journal={Journal of discrete algorithms}, pages={115--134}, author={Bustos Cárdenas, Benjamin Eugenio and Navarro, Gonzalo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5539"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5539"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:18Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: Journal of discrete algorithms 2 (2004), 1, pp. 115-134</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Navarro, Gonzalo</dc:creator> <dcterms:abstract xml:lang="eng">The main bottleneck of the research in metric space searching is the so-called curse of dimensionality, which makes the task of searching some metric spaces intrinsically difficult, whatever algorithm is used. A recent trend to break this bottleneck resorts to probabilistic algorithms, where it has been shown that one can find 99% of the relevant objects at a fraction of the cost of the exact algorithm. These algorithms are welcome in most applications because resorting to metric space searching already involves a fuzziness in the retrieval requirements. In this paper, we push further in this direction by developing probabilistic algorithms on data structures whose exact versions are the best for high dimensions. As a result, we obtain probabilistic algorithms that are better than the previous ones. We give new insights on the problem and propose a novel view based on time-bounded searching. We also propose an experimental framework for probabilistic algorithms that permits comparing them in offline mode.</dcterms:abstract> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>2004</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:18Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5539/1/BN04Bustos.pdf"/> <dc:creator>Bustos Cárdenas, Benjamin Eugenio</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Bustos Cárdenas, Benjamin Eugenio</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5539/1/BN04Bustos.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Probabilistic Proximity Search Algorithms Based on Compact Partitions</dcterms:title> <dc:contributor>Navarro, Gonzalo</dc:contributor> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>