Publikation:

Speed-accuracy trade-offs in best-of-n collective decision making through heterogeneous mean-field modeling

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Njougouo, Thierry
Tuci, Elio
Carletti, Timoteo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 422037984

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review E. American Physical Society (APS). 2024, 109(5), 054307. ISSN 2470-0045. eISSN 2470-0053. Verfügbar unter: doi: 10.1103/physreve.109.054307

Zusammenfassung

To succeed in their objectives, groups of individuals must be able to make quick and accurate collective decisions on the best option among a set of alternatives with different qualities. Group-living animals aim to do that all the time. Plants and fungi are thought to do so too. Swarms of autonomous robots can also be programed to make best-of-n decisions for solving tasks collaboratively. Ultimately, humans critically need it and so many times they should be better at it! Thanks to their mathematical tractability, simple models like the voter model and the local majority rule model have proven useful to describe the dynamics of such collective decision-making processes. To reach a consensus, individuals change their opinion by interacting with neighbors in their social network. At least among animals and robots, options with a better quality are exchanged more often and therefore spread faster than lower-quality options, leading to the collective selection of the best option. With our work, we study the impact of individuals making errors in pooling others' opinions caused, for example, by the need to reduce the cognitive load. Our analysis is grounded on the introduction of a model that generalizes the two existing models (local majority rule and voter model), showing a speed-accuracy trade-off regulated by the cognitive effort of individuals. We also investigate the impact of the interaction network topology on the collective dynamics. To do so, we extend our model and, by using the heterogeneous mean-field approach, we show the presence of another speed-accuracy trade-off regulated by network connectivity. An interesting result is that reduced network connectivity corresponds to an increase in collective decision accuracy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690REINA, Andreagiovanni, Thierry NJOUGOUO, Elio TUCI, Timoteo CARLETTI, 2024. Speed-accuracy trade-offs in best-of-n collective decision making through heterogeneous mean-field modeling. In: Physical Review E. American Physical Society (APS). 2024, 109(5), 054307. ISSN 2470-0045. eISSN 2470-0053. Verfügbar unter: doi: 10.1103/physreve.109.054307
BibTex
@article{Reina2024-05-06Speed-70340,
  year={2024},
  doi={10.1103/physreve.109.054307},
  title={Speed-accuracy trade-offs in best-of-n collective decision making through heterogeneous mean-field modeling},
  number={5},
  volume={109},
  issn={2470-0045},
  journal={Physical Review E},
  author={Reina, Andreagiovanni and Njougouo, Thierry and Tuci, Elio and Carletti, Timoteo},
  note={Article Number: 054307}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70340">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2024-05-06</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Carletti, Timoteo</dc:contributor>
    <dc:creator>Reina, Andreagiovanni</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Reina, Andreagiovanni</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Tuci, Elio</dc:creator>
    <dc:contributor>Tuci, Elio</dc:contributor>
    <dc:contributor>Njougouo, Thierry</dc:contributor>
    <dcterms:title>Speed-accuracy trade-offs in best-of-n collective decision making through heterogeneous mean-field modeling</dcterms:title>
    <dc:creator>Carletti, Timoteo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-08T11:00:26Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70340"/>
    <dc:creator>Njougouo, Thierry</dc:creator>
    <dcterms:abstract>To succeed in their objectives, groups of individuals must be able to make quick and accurate collective decisions on the best option among a set of alternatives with different qualities. Group-living animals aim to do that all the time. Plants and fungi are thought to do so too. Swarms of autonomous robots can also be programed to make best-of-n decisions for solving tasks collaboratively. Ultimately, humans critically need it and so many times they should be better at it! Thanks to their mathematical tractability, simple models like the voter model and the local majority rule model have proven useful to describe the dynamics of such collective decision-making processes. To reach a consensus, individuals change their opinion by interacting with neighbors in their social network. At least among animals and robots, options with a better quality are exchanged more often and therefore spread faster than lower-quality options, leading to the collective selection of the best option. With our work, we study the impact of individuals making errors in pooling others' opinions caused, for example, by the need to reduce the cognitive load. Our analysis is grounded on the introduction of a model that generalizes the two existing models (local majority rule and voter model), showing a speed-accuracy trade-off regulated by the cognitive effort of individuals. We also investigate the impact of the interaction network topology on the collective dynamics. To do so, we extend our model and, by using the heterogeneous mean-field approach, we show the presence of another speed-accuracy trade-off regulated by network connectivity. An interesting result is that reduced network connectivity corresponds to an increase in collective decision accuracy.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-08T11:00:26Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen