Publikation:

Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors

Lade...
Vorschaubild

Dateien

Boeddeker_2-1o19u6qrbck6f0.pdf
Boeddeker_2-1o19u6qrbck6f0.pdfGröße: 600.28 KBDownloads: 35

Datum

2020

Autor:innen

Böddeker, Thomas J.
Kreis, Christian T.
Magdelaine, Quentin
Bäumchen, Oliver

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Interface : Journal of the Royal Society. Royal Society of London. 2020, 17(162), 20190580. ISSN 1742-5689. eISSN 1742-5662. Available under: doi: 10.1098/rsif.2019.0580

Zusammenfassung

Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct in vivo measurements of the dynamic forces of motile Chlamydomonas reinhardtii cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette’s position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette’s full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual Chlamydomonas reinhardtii cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

biophysics, biomechanics, microswimmers, Chlamydomonas, flagella, cell motility, force measurements, active matter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BÖDDEKER, Thomas J., Stefan KARPITSCHKA, Christian T. KREIS, Quentin MAGDELAINE, Oliver BÄUMCHEN, 2020. Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors. In: Interface : Journal of the Royal Society. Royal Society of London. 2020, 17(162), 20190580. ISSN 1742-5689. eISSN 1742-5662. Available under: doi: 10.1098/rsif.2019.0580
BibTex
@article{Boddeker2020Dynam-67442,
  year={2020},
  doi={10.1098/rsif.2019.0580},
  title={Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors},
  number={162},
  volume={17},
  issn={1742-5689},
  journal={Interface : Journal of the Royal Society},
  author={Böddeker, Thomas J. and Karpitschka, Stefan and Kreis, Christian T. and Magdelaine, Quentin and Bäumchen, Oliver},
  note={Article Number: 20190580}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67442">
    <dc:contributor>Karpitschka, Stefan</dc:contributor>
    <dc:contributor>Böddeker, Thomas J.</dc:contributor>
    <dcterms:abstract>Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct in vivo measurements of the dynamic forces of motile Chlamydomonas reinhardtii cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette’s position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette’s full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual Chlamydomonas reinhardtii cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67442/4/Boeddeker_2-1o19u6qrbck6f0.pdf"/>
    <dc:creator>Bäumchen, Oliver</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-27T07:25:37Z</dc:date>
    <dc:contributor>Bäumchen, Oliver</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67442"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kreis, Christian T.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Kreis, Christian T.</dc:creator>
    <dcterms:title>Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Böddeker, Thomas J.</dc:creator>
    <dc:contributor>Magdelaine, Quentin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Magdelaine, Quentin</dc:creator>
    <dc:creator>Karpitschka, Stefan</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67442/4/Boeddeker_2-1o19u6qrbck6f0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-27T07:25:37Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen