Publikation:

A Critical Meta-Analysis of Lens Model Studies in Human Judgment and Decision-Making

Lade...
Vorschaubild

Dateien

Kaufmann_270577.pdf
Kaufmann_270577.pdfGröße: 651.04 KBDownloads: 327

Datum

2013

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS ONE. 2013, 8(12), e83528. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0083528

Zusammenfassung

Achieving accurate judgment (‘judgmental achievement’) is of utmost importance in daily life across multiple domains. The lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis, an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e., replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies (N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs. novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias. Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only corrected for sampling error) indicated that artifact correction leads to a) an increase in values of the lens model components, b) reduced heterogeneity between studies, and c) increases the success of bootstrapping. We argue that psychometric meta-analysis is useful for accurately evaluating human judgment and show the success of bootstrapping.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Jugment achievement, lens model equation, Egon Brunswik, validity, psychometric meta-analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAUFMANN, Esther, Ulf-Dietrich REIPS, Werner W. WITTMANN, 2013. A Critical Meta-Analysis of Lens Model Studies in Human Judgment and Decision-Making. In: PLoS ONE. 2013, 8(12), e83528. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0083528
BibTex
@article{Kaufmann2013Criti-27057,
  year={2013},
  doi={10.1371/journal.pone.0083528},
  title={A Critical Meta-Analysis of Lens Model Studies in Human Judgment and Decision-Making},
  number={12},
  volume={8},
  journal={PLoS ONE},
  author={Kaufmann, Esther and Reips, Ulf-Dietrich and Wittmann, Werner W.},
  note={Article Number: e83528}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27057">
    <dc:contributor>Reips, Ulf-Dietrich</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Wittmann, Werner W.</dc:creator>
    <dc:contributor>Kaufmann, Esther</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Plos one ;  8 (2013), 12. - e83528</dcterms:bibliographicCitation>
    <dc:contributor>Wittmann, Werner W.</dc:contributor>
    <dcterms:title>A Critical Meta-Analysis of Lens Model Studies in Human Judgment and Decision-Making</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Kaufmann, Esther</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27057/1/Kaufmann_270577.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-18T10:51:04Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Achieving accurate judgment (‘judgmental achievement’) is of utmost importance in daily life across multiple domains. The lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis, an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e., replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies (N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs. novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias. Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only corrected for sampling error) indicated that artifact correction leads to a) an increase in values of the lens model components, b) reduced heterogeneity between studies, and c) increases the success of bootstrapping. We argue that psychometric meta-analysis is useful for accurately evaluating human judgment and show the success of bootstrapping.</dcterms:abstract>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-18T10:51:04Z</dc:date>
    <dc:creator>Reips, Ulf-Dietrich</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27057/1/Kaufmann_270577.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27057"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen