Publikation:

IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual's performance

Lade...
Vorschaubild

Dateien

Rodrigues_2-1o07yjh7u8kd73.pdf
Rodrigues_2-1o07yjh7u8kd73.pdfGröße: 3.97 MBDownloads: 185

Datum

2021

Autor:innen

Rodrigues, João
Studer, Erik
Sandi, Carmen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neurobiology of Stress. Elsevier. 2021, 15, 100382. eISSN 2352-2895. Available under: doi: 10.1016/j.ynstr.2021.100382

Zusammenfassung

Laboratory stressors are essential tools to study the human stress response. However, despite considerable progress in the development of stress induction procedures in recent years, the field is still missing standardization and the methods employed frequently require considerable personnel resources. Virtual reality (VR) offers flexible solutions to these problems, but available VR stress-induction tests still contain important sources of variation that challenge data interpretation. One of the major drawbacks is that tasks based on motivated performance do not adapt to individual abilities. Here, we provide open access to, and present, a novel and standardized immersive multimodal virtual environment stress test (IMVEST) in which participants are simultaneously exposed to mental -arithmetic calculations- and environmental challenges, along with intense visual and auditory stimulation. It contains critical elements of stress elicitation – perceived threat to physical self, social-evaluative threat and negative feedback, uncontrollability and unpredictability – and adjusts mathematical challenge to individual's ongoing performance. It is accompanied by a control VR scenario offering a comparable but not stressful situation. We validate and characterize the stress response to IMVEST in one-hundred-and-eighteen participants. Both cortisol and a wide range of autonomic nervous system (ANS) markers – extracted from the electrocardiogram, electrodermal activity and respiration – are significantly affected. We also show that ANS features can be used to train a stress prediction machine learning model that strongly discriminates between stress and control conditions, and indicates which aspects of IMVEST affect specific ANS components.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Stress test, Sympathetic nervous system, Virtual reality, Machine learning, Multimodal stress

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RODRIGUES, João, Erik STUDER, Stephan STREUBER, Carmen SANDI, 2021. IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual's performance. In: Neurobiology of Stress. Elsevier. 2021, 15, 100382. eISSN 2352-2895. Available under: doi: 10.1016/j.ynstr.2021.100382
BibTex
@article{Rodrigues2021-11IMVES-54664,
  year={2021},
  doi={10.1016/j.ynstr.2021.100382},
  title={IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual's performance},
  volume={15},
  journal={Neurobiology of Stress},
  author={Rodrigues, João and Studer, Erik and Streuber, Stephan and Sandi, Carmen},
  note={Article Number: 100382}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54664">
    <dc:creator>Rodrigues, João</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Sandi, Carmen</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54664"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Streuber, Stephan</dc:contributor>
    <dc:creator>Sandi, Carmen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Laboratory stressors are essential tools to study the human stress response. However, despite considerable progress in the development of stress induction procedures in recent years, the field is still missing standardization and the methods employed frequently require considerable personnel resources. Virtual reality (VR) offers flexible solutions to these problems, but available VR stress-induction tests still contain important sources of variation that challenge data interpretation. One of the major drawbacks is that tasks based on motivated performance do not adapt to individual abilities. Here, we provide open access to, and present, a novel and standardized immersive multimodal virtual environment stress test (IMVEST) in which participants are simultaneously exposed to mental -arithmetic calculations- and environmental challenges, along with intense visual and auditory stimulation. It contains critical elements of stress elicitation – perceived threat to physical self, social-evaluative threat and negative feedback, uncontrollability and unpredictability – and adjusts mathematical challenge to individual's ongoing performance. It is accompanied by a control VR scenario offering a comparable but not stressful situation. We validate and characterize the stress response to IMVEST in one-hundred-and-eighteen participants. Both cortisol and a wide range of autonomic nervous system (ANS) markers – extracted from the electrocardiogram, electrodermal activity and respiration – are significantly affected. We also show that ANS features can be used to train a stress prediction machine learning model that strongly discriminates between stress and control conditions, and indicates which aspects of IMVEST affect specific ANS components.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Streuber, Stephan</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Studer, Erik</dc:creator>
    <dc:contributor>Studer, Erik</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54664/1/Rodrigues_2-1o07yjh7u8kd73.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2021-11</dcterms:issued>
    <dcterms:title>IMVEST, an immersive multimodal virtual environment stress test for humans that adjusts challenge to individual's performance</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-20T11:52:10Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rodrigues, João</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54664/1/Rodrigues_2-1o07yjh7u8kd73.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-20T11:52:10Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen