Relative Resolution : A Multipole Approximation at Appropriate Distances

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Chaimovich, Aviel
Kremer, Kurt
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review Research. American Physical Society. 2019, 1(2), 023034. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.1.023034
Zusammenfassung

Recently, we introduced Relative Resolution as a hybrid formalism for fluid mixtures [1]. The essence of this approach is that it switches molecular resolution in terms or relative separation: While nearest neighbors are characterized by a detailed fine-grained model, other neighbors are characterized by a simplified coarse-grained model. Once the two models are analytically connected with each other via energy conservation, Relative Resolution can capture the structural and thermal behavior of (nonpolar) multi-component and multi-phase systems across state space. The current work is a natural continuation of our original communication [1]. Most importantly, we present the comprehensive mathematics of Relative Resolution, basically casting it as a multipole approximation at appropriate distances; the current set of equations importantly applies for all systems (e.g, polar molecules). Besides, we continue examining the capability of our multiscale approach in molecular simulations, importantly showing that we can successfully retrieve not just the statics but also the dynamics of liquid systems. We finally conclude by discussing how Relative Resolution is the inherent variant of the famous "cell-multipole" approach for molecular simulations.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CHAIMOVICH, Aviel, Kurt KREMER, Christine PETER, 2019. Relative Resolution : A Multipole Approximation at Appropriate Distances. In: Physical Review Research. American Physical Society. 2019, 1(2), 023034. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.1.023034
BibTex
@article{Chaimovich2019Relat-54764,
  year={2019},
  doi={10.1103/PhysRevResearch.1.023034},
  title={Relative Resolution : A Multipole Approximation at Appropriate Distances},
  number={2},
  volume={1},
  journal={Physical Review Research},
  author={Chaimovich, Aviel and Kremer, Kurt and Peter, Christine},
  note={Article Number: 023034}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54764">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kremer, Kurt</dc:creator>
    <dcterms:abstract xml:lang="eng">Recently, we introduced Relative Resolution as a hybrid formalism for fluid mixtures [1]. The essence of this approach is that it switches molecular resolution in terms or relative separation: While nearest neighbors are characterized by a detailed fine-grained model, other neighbors are characterized by a simplified coarse-grained model. Once the two models are analytically connected with each other via energy conservation, Relative Resolution can capture the structural and thermal behavior of (nonpolar) multi-component and multi-phase systems across state space. The current work is a natural continuation of our original communication [1]. Most importantly, we present the comprehensive mathematics of Relative Resolution, basically casting it as a multipole approximation at appropriate distances; the current set of equations importantly applies for all systems (e.g, polar molecules). Besides, we continue examining the capability of our multiscale approach in molecular simulations, importantly showing that we can successfully retrieve not just the statics but also the dynamics of liquid systems. We finally conclude by discussing how Relative Resolution is the inherent variant of the famous "cell-multipole" approach for molecular simulations.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Chaimovich, Aviel</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-01T12:08:01Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54764"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>Relative Resolution : A Multipole Approximation at Appropriate Distances</dcterms:title>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-01T12:08:01Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54764/1/Chaimovich_2-1nwein9cq5iui0.pdf"/>
    <dc:creator>Chaimovich, Aviel</dc:creator>
    <dc:contributor>Kremer, Kurt</dc:contributor>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54764/1/Chaimovich_2-1nwein9cq5iui0.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen