Publikation: An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 496858717
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the early days of perceptual image quality research more than 30 years ago, the multidimensionality of distortions in perceptual space was considered important. However, research focused on scalar quality as measured by mean opinion scores. With our work, we intend to revive interest in this relevant area by presenting a first pilot dataset of annotated triplet comparisons for image quality assessment. It contains one source stimulus together with distorted versions derived from 7 distortion types at 12 levels each. Our crowdsourced and curated dataset contains roughly 50,000 responses to 7,000 triplet comparisons. We show that the multidimensional embedding of the dataset poses a challenge for many established triplet embedding algorithms. Finally, we propose a new reconstruction algorithm, dubbed logistic triplet embedding (LTE) with Tikhonov regularization. It shows promising performance. This study helps researchers to create larger datasets and better embedding techniques for multidimensional image quality. The dataset includes images and ratings and can be accessed at https://github.com/jenadeleh/multidimensional- IQA-dataset/tree/main.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JENADELEH, Mohsen, Frederik L. DENNIG, Rene CUTURA, Quynh Quang NGO, Daniel A. KEIM, Michael SEDLMAIR, Dietmar SAUPE, 2024. An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling. The 16th International Conference on Quality of Multimedia Experience (QoMEX’24). Karlshamn, Sweden, 18. Juni 2024 - 20. Juni 2024. In: The 16th International Conference on Quality of Multimedia Experience (QoMEX’24). Piscataway, NJ: IEEE, 2024. Verfügbar unter: doi: 10.1109/QoMEX61742.2024.10598258BibTex
@inproceedings{Jenadeleh2024Image-70265, year={2024}, doi={10.1109/QoMEX61742.2024.10598258}, title={An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={The 16th International Conference on Quality of Multimedia Experience (QoMEX’24)}, author={Jenadeleh, Mohsen and Dennig, Frederik L. and Cutura, Rene and Ngo, Quynh Quang and Keim, Daniel A. and Sedlmair, Michael and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70265"> <dcterms:abstract>In the early days of perceptual image quality research more than 30 years ago, the multidimensionality of distortions in perceptual space was considered important. However, research focused on scalar quality as measured by mean opinion scores. With our work, we intend to revive interest in this relevant area by presenting a first pilot dataset of annotated triplet comparisons for image quality assessment. It contains one source stimulus together with distorted versions derived from 7 distortion types at 12 levels each. Our crowdsourced and curated dataset contains roughly 50,000 responses to 7,000 triplet comparisons. We show that the multidimensional embedding of the dataset poses a challenge for many established triplet embedding algorithms. Finally, we propose a new reconstruction algorithm, dubbed logistic triplet embedding (LTE) with Tikhonov regularization. It shows promising performance. This study helps researchers to create larger datasets and better embedding techniques for multidimensional image quality. The dataset includes images and ratings and can be accessed at https://github.com/jenadeleh/multidimensional- IQA-dataset/tree/main.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70265"/> <dc:contributor>Jenadeleh, Mohsen</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Sedlmair, Michael</dc:creator> <dc:contributor>Ngo, Quynh Quang</dc:contributor> <dc:creator>Ngo, Quynh Quang</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-27T11:06:36Z</dc:date> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2024</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Saupe, Dietmar</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70265/1/Jenadeleh_2-1nucbyv0xgyko2.pdf"/> <dc:creator>Cutura, Rene</dc:creator> <dc:contributor>Dennig, Frederik L.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Dennig, Frederik L.</dc:creator> <dc:creator>Jenadeleh, Mohsen</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70265/1/Jenadeleh_2-1nucbyv0xgyko2.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Cutura, Rene</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Sedlmair, Michael</dc:contributor> <dcterms:title>An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-27T11:06:36Z</dcterms:available> </rdf:Description> </rdf:RDF>