Publikation:

An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling

Lade...
Vorschaubild

Dateien

Jenadeleh_2-1nucbyv0xgyko2.pdf
Jenadeleh_2-1nucbyv0xgyko2.pdfGröße: 306.16 KBDownloads: 121

Datum

2024

Autor:innen

Cutura, Rene
Ngo, Quynh Quang
Sedlmair, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672, TRR 161, projects A03 and A08
Deutsche Forschungsgemeinschaft (DFG): 496858717

Projekt

JND - basierte perzeptuelle Videoqualitätsanalyse und -modellierung
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

The 16th International Conference on Quality of Multimedia Experience (QoMEX’24). Piscataway, NJ: IEEE, 2024. Verfügbar unter: doi: 10.1109/QoMEX61742.2024.10598258

Zusammenfassung

In the early days of perceptual image quality research more than 30 years ago, the multidimensionality of distortions in perceptual space was considered important. However, research focused on scalar quality as measured by mean opinion scores. With our work, we intend to revive interest in this relevant area by presenting a first pilot dataset of annotated triplet comparisons for image quality assessment. It contains one source stimulus together with distorted versions derived from 7 distortion types at 12 levels each. Our crowdsourced and curated dataset contains roughly 50,000 responses to 7,000 triplet comparisons. We show that the multidimensional embedding of the dataset poses a challenge for many established triplet embedding algorithms. Finally, we propose a new reconstruction algorithm, dubbed logistic triplet embedding (LTE) with Tikhonov regularization. It shows promising performance. This study helps researchers to create larger datasets and better embedding techniques for multidimensional image quality. The dataset includes images and ratings and can be accessed at https://github.com/jenadeleh/multidimensional- IQA-dataset/tree/main.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

The 16th International Conference on Quality of Multimedia Experience (QoMEX’24), 18. Juni 2024 - 20. Juni 2024, Karlshamn, Sweden
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JENADELEH, Mohsen, Frederik L. DENNIG, Rene CUTURA, Quynh Quang NGO, Daniel A. KEIM, Michael SEDLMAIR, Dietmar SAUPE, 2024. An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling. The 16th International Conference on Quality of Multimedia Experience (QoMEX’24). Karlshamn, Sweden, 18. Juni 2024 - 20. Juni 2024. In: The 16th International Conference on Quality of Multimedia Experience (QoMEX’24). Piscataway, NJ: IEEE, 2024. Verfügbar unter: doi: 10.1109/QoMEX61742.2024.10598258
BibTex
@inproceedings{Jenadeleh2024Image-70265,
  year={2024},
  doi={10.1109/QoMEX61742.2024.10598258},
  title={An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={The 16th International Conference on Quality of Multimedia Experience (QoMEX’24)},
  author={Jenadeleh, Mohsen and Dennig, Frederik L. and Cutura, Rene and Ngo, Quynh Quang and Keim, Daniel A. and Sedlmair, Michael and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70265">
    <dcterms:abstract>In the early days of perceptual image quality research more than 30 years ago, the multidimensionality of distortions in perceptual space was considered important. However, research focused on scalar quality as measured by mean opinion scores. With our work, we intend to revive interest in this relevant area by presenting a first pilot dataset of annotated triplet comparisons for image quality assessment. It contains one source stimulus together with distorted versions derived from 7 distortion types at 12 levels each. Our crowdsourced and curated dataset contains roughly 50,000 responses to 7,000 triplet comparisons. We show that the multidimensional embedding of the dataset poses a challenge for many established triplet embedding algorithms. Finally, we propose a new reconstruction algorithm, dubbed logistic triplet embedding (LTE) with Tikhonov regularization. It shows promising performance. This study helps researchers to create larger datasets and better embedding techniques for multidimensional image quality. The dataset includes images and ratings and can be accessed at https://github.com/jenadeleh/multidimensional- IQA-dataset/tree/main.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70265"/>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dc:contributor>Ngo, Quynh Quang</dc:contributor>
    <dc:creator>Ngo, Quynh Quang</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-27T11:06:36Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70265/1/Jenadeleh_2-1nucbyv0xgyko2.pdf"/>
    <dc:creator>Cutura, Rene</dc:creator>
    <dc:contributor>Dennig, Frederik L.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Dennig, Frederik L.</dc:creator>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70265/1/Jenadeleh_2-1nucbyv0xgyko2.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Cutura, Rene</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <dcterms:title>An Image Quality Dataset with Triplet Comparisons for Multi-dimensional Scaling</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-27T11:06:36Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
multidimensional IQA dataset
Diese Publikation teilen