Publikation: Pattern Graphs: Combining Multivariate Time Series and Labelled Interval Sequences for Classification
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Classifying multivariate time series is often dealt with by transforming the numeric series into labelled intervals, because many pattern representations exist to deal with labelled intervals. Finding the right preprocessing is not only time consuming but also critical for the success of the learning algorithms. In this paper we show how pattern graphs, a powerful pattern language for temporal classification rules, can be extended in order to handle labelled intervals in combination with the raw time series. We thereby reduce dependence on the quality of the preprocessing and at the same time increase performance. These benefits are demonstrated experimentally on 10 different data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PETER, Sebastian, Frank HÖPPNER, Michael R. BERTHOLD, 2013. Pattern Graphs: Combining Multivariate Time Series and Labelled Interval Sequences for Classification. In: BRAMER, Max, ed., Miltos PETRIDIS, ed.. Research and Development in Intelligent Systems XXX. Cham: Springer International Publishing, 2013, pp. 5-18. ISBN 978-3-319-02620-6. Available under: doi: 10.1007/978-3-319-02621-3_1BibTex
@inproceedings{Peter2013-11-07Patte-26489, year={2013}, doi={10.1007/978-3-319-02621-3_1}, title={Pattern Graphs: Combining Multivariate Time Series and Labelled Interval Sequences for Classification}, isbn={978-3-319-02620-6}, publisher={Springer International Publishing}, address={Cham}, booktitle={Research and Development in Intelligent Systems XXX}, pages={5--18}, editor={Bramer, Max and Petridis, Miltos}, author={Peter, Sebastian and Höppner, Frank and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26489"> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26489/2/Peter_264892.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26489"/> <dc:contributor>Peter, Sebastian</dc:contributor> <dcterms:issued>2013-11-07</dcterms:issued> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:title>Pattern Graphs: Combining Multivariate Time Series and Labelled Interval Sequences for Classification</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T09:35:10Z</dcterms:available> <dcterms:abstract xml:lang="eng">Classifying multivariate time series is often dealt with by transforming the numeric series into labelled intervals, because many pattern representations exist to deal with labelled intervals. Finding the right preprocessing is not only time consuming but also critical for the success of the learning algorithms. In this paper we show how pattern graphs, a powerful pattern language for temporal classification rules, can be extended in order to handle labelled intervals in combination with the raw time series. We thereby reduce dependence on the quality of the preprocessing and at the same time increase performance. These benefits are demonstrated experimentally on 10 different data sets.</dcterms:abstract> <dc:contributor>Höppner, Frank</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Höppner, Frank</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-26T09:35:10Z</dc:date> <dcterms:bibliographicCitation>Research and Development in Intelligent Systems XXX : Incorporating Applications and Innovations in Intelligent Systems XXI Proceedings of AI-2013 ; The Thirty-third SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence / edited by Max Bramer, Miltos Petridis. - Cham : Springer International Publishing, 2013. - S. 5-18. - ISBN 978-3-319-02620-6</dcterms:bibliographicCitation> <dc:creator>Peter, Sebastian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26489/2/Peter_264892.pdf"/> </rdf:Description> </rdf:RDF>