Publikation: Algorithms for Average Regret Minimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we study a problem from the realm of multicriteria decision making in which the goal is to select from a given set S of d-dimensional objects a minimum sized subset S0 with bounded regret. Thereby, regret measures the unhappiness of users which would like to select their favorite object from set S but now can only select their favorite object from the subset S0. Previous work focused on bounding the maximum regret which is determined by the most unhappy user. We propose to consider the average regret instead which is determined by the sum of (un)happiness of all possible users. We show that this regret measure comes with desirable properties as supermodularity which allows to construct approximation algorithms. Furthermore, we introduce the regret minimizing permutation problem and discuss extensions of our algorithms to the recently proposed k-regret measure. Our theoretical results are accompanied with experiments on a variety of inputs with d up to 7.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STORANDT, Sabine, Stefan FUNKE, 2019. Algorithms for Average Regret Minimization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Honolulu, 27. Jan. 2019 - 1. Feb. 2019. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019, pp. 1600-1607. ISSN 2159-5399. eISSN 2374-3468. ISBN 978-1-57735-809-1BibTex
@inproceedings{Storandt2019Algor-46796, year={2019}, title={Algorithms for Average Regret Minimization}, isbn={978-1-57735-809-1}, issn={2159-5399}, publisher={AAAI Press}, address={Palo Alto}, booktitle={Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence}, pages={1600--1607}, author={Storandt, Sabine and Funke, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46796"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-05T10:51:51Z</dcterms:available> <dcterms:issued>2019</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46796"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Algorithms for Average Regret Minimization</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In this paper, we study a problem from the realm of multicriteria decision making in which the goal is to select from a given set S of d-dimensional objects a minimum sized subset S<sup>0</sup> with bounded regret. Thereby, regret measures the unhappiness of users which would like to select their favorite object from set S but now can only select their favorite object from the subset S<sup>0</sup>. Previous work focused on bounding the maximum regret which is determined by the most unhappy user. We propose to consider the average regret instead which is determined by the sum of (un)happiness of all possible users. We show that this regret measure comes with desirable properties as supermodularity which allows to construct approximation algorithms. Furthermore, we introduce the regret minimizing permutation problem and discuss extensions of our algorithms to the recently proposed k-regret measure. Our theoretical results are accompanied with experiments on a variety of inputs with d up to 7.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Storandt, Sabine</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-05T10:51:51Z</dc:date> <dc:creator>Storandt, Sabine</dc:creator> <dc:contributor>Funke, Stefan</dc:contributor> <dc:creator>Funke, Stefan</dc:creator> </rdf:Description> </rdf:RDF>