Publikation: An inverse scattering problem for the time-dependent Maxwell equations : nonlinear optimization and model-order reduction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, an inverse scattering problem for the time-dependent Maxwell curl equations is considered on an unbounded domain. This problem is formulated as an optimal control problem governed by partial differential equations. Utilizing techniques from infinite-dimensional optimization first-order necessary optimality conditions is presented. For the numerical solution, a gradient-based algorithm is successfully applied. To investigate the applicability of reduced-order modeling in the context of the underlying inverse scattering problem, the method of proper orthogonal decomposition is studied for the Maxwell equations with respect to changes in the excitation frequencies and change of parameters. Numerical tests illustrate the efficiency for the proper orthogonal decomposition model-order reduction approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MANCINI, Roberta, Stefan VOLKWEIN, 2013. An inverse scattering problem for the time-dependent Maxwell equations : nonlinear optimization and model-order reduction. In: Numerical Linear Algebra with Applications. 2013, 20(4), pp. 689-711. ISSN 1070-5325. eISSN 1099-1506. Available under: doi: 10.1002/nla.1873BibTex
@article{Mancini2013inver-26453, year={2013}, doi={10.1002/nla.1873}, title={An inverse scattering problem for the time-dependent Maxwell equations : nonlinear optimization and model-order reduction}, number={4}, volume={20}, issn={1070-5325}, journal={Numerical Linear Algebra with Applications}, pages={689--711}, author={Mancini, Roberta and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26453"> <dcterms:abstract xml:lang="eng">In this paper, an inverse scattering problem for the time-dependent Maxwell curl equations is considered on an unbounded domain. This problem is formulated as an optimal control problem governed by partial differential equations. Utilizing techniques from infinite-dimensional optimization first-order necessary optimality conditions is presented. For the numerical solution, a gradient-based algorithm is successfully applied. To investigate the applicability of reduced-order modeling in the context of the underlying inverse scattering problem, the method of proper orthogonal decomposition is studied for the Maxwell equations with respect to changes in the excitation frequencies and change of parameters. Numerical tests illustrate the efficiency for the proper orthogonal decomposition model-order reduction approach.</dcterms:abstract> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T14:22:13Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T14:22:13Z</dcterms:available> <dcterms:issued>2013</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:bibliographicCitation>Numerical Linear Algebra with Applications ; 20 (2013), 4. - S. 689-711</dcterms:bibliographicCitation> <dc:contributor>Mancini, Roberta</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26453"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Mancini, Roberta</dc:creator> <dcterms:title>An inverse scattering problem for the time-dependent Maxwell equations : nonlinear optimization and model-order reduction</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>