Simulating bistable current-induced switching of metallic atomic contacts by electron-vibration scattering
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a microscopic model, describing current-driven switching in metallic atomic-size contacts. Applying a high current through an atomic-size contact creates a strong electronic nonequilibrium that excites vibrational modes by virtue of the electron-vibration coupling. Using density-functional theory (DFT) in combination with the Landauer-Büttiker theory for phase-coherent transport, expressed in terms of nonequilibrium Green's functions (NEGFs), we study the current-induced forces arising from this nonequilibrium and determine those vibrational modes which couple most strongly to the electronic system. For single-atom lead (Pb) contacts we show specific candidates for bistable switches, consisting of two similar atomic configurations with differing electric conductance. We identify vibrational modes that induce a transition between these configurations. Our results reveal a possible origin of bistable switching in atomic-size contacts through excitation of vibrations by inelastic electron scattering and underline the power of the combined DFT-NEGF approach and statistical mechanics analysis of a Langevin equation to overcome the timescale gap between atomic motion and rare switching events, allowing for an efficient exploration of the contacts' configurational phase space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RING, Markus, Fabian PAULY, Peter NIELABA, Elke SCHEER, 2023. Simulating bistable current-induced switching of metallic atomic contacts by electron-vibration scattering. In: Physical Review B. American Physical Society (APS). 2023, 108(1), 014305. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/physrevb.108.014305BibTex
@article{Ring2023-07-20Simul-67439, year={2023}, doi={10.1103/physrevb.108.014305}, title={Simulating bistable current-induced switching of metallic atomic contacts by electron-vibration scattering}, number={1}, volume={108}, issn={2469-9950}, journal={Physical Review B}, author={Ring, Markus and Pauly, Fabian and Nielaba, Peter and Scheer, Elke}, note={We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project No. 262725753 Article Number: 014305} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67439"> <dc:contributor>Scheer, Elke</dc:contributor> <dc:contributor>Ring, Markus</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Pauly, Fabian</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67439"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Scheer, Elke</dc:creator> <dc:creator>Nielaba, Peter</dc:creator> <dcterms:title>Simulating bistable current-induced switching of metallic atomic contacts by electron-vibration scattering</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract>We present a microscopic model, describing current-driven switching in metallic atomic-size contacts. Applying a high current through an atomic-size contact creates a strong electronic nonequilibrium that excites vibrational modes by virtue of the electron-vibration coupling. Using density-functional theory (DFT) in combination with the Landauer-Büttiker theory for phase-coherent transport, expressed in terms of nonequilibrium Green's functions (NEGFs), we study the current-induced forces arising from this nonequilibrium and determine those vibrational modes which couple most strongly to the electronic system. For single-atom lead (Pb) contacts we show specific candidates for bistable switches, consisting of two similar atomic configurations with differing electric conductance. We identify vibrational modes that induce a transition between these configurations. Our results reveal a possible origin of bistable switching in atomic-size contacts through excitation of vibrations by inelastic electron scattering and underline the power of the combined DFT-NEGF approach and statistical mechanics analysis of a Langevin equation to overcome the timescale gap between atomic motion and rare switching events, allowing for an efficient exploration of the contacts' configurational phase space.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-25T13:19:48Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-25T13:19:48Z</dcterms:available> <dc:creator>Ring, Markus</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Pauly, Fabian</dc:contributor> <dc:contributor>Nielaba, Peter</dc:contributor> <dcterms:issued>2023-07-20</dcterms:issued> </rdf:Description> </rdf:RDF>