Publikation: Complex dynamics of a single neuron model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study a mathematical model of a single neuron with self-coupling. The model is based on the FitzHugh-Nagumo oscillator and an equation describing synaptic properties of the neuron. The analysis of the model is focused on its dynamics, depending on parameters characterizing synaptic time constants and external signals that affect the neuron. Applying Lyapunov exponents and bifurcation analysis, we point out the occurrence of parameter regions with different behavior such as bursting (chaotic or periodic), spiking, and multistable phenomena. Moreover, we can describe the dynamics of the model using an analytical approximation of the one-dimensional Poincaré map extracted from the numerical simulations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POPOVYCH, Svitlana, Annette GAIL, Johannes SCHROPP, 2006. Complex dynamics of a single neuron model. In: Physical Review E. 2006, 74(4), 041914. ISSN 1539-3755. eISSN 1550-2376. Available under: doi: 10.1103/PhysRevE.74.041914BibTex
@article{Popovych2006-10Compl-43185, year={2006}, doi={10.1103/PhysRevE.74.041914}, title={Complex dynamics of a single neuron model}, number={4}, volume={74}, issn={1539-3755}, journal={Physical Review E}, author={Popovych, Svitlana and Gail, Annette and Schropp, Johannes}, note={Article Number: 041914} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43185"> <dc:contributor>Gail, Annette</dc:contributor> <dc:contributor>Popovych, Svitlana</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-06T08:02:55Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43185"/> <dc:creator>Popovych, Svitlana</dc:creator> <dcterms:abstract xml:lang="eng">We study a mathematical model of a single neuron with self-coupling. The model is based on the FitzHugh-Nagumo oscillator and an equation describing synaptic properties of the neuron. The analysis of the model is focused on its dynamics, depending on parameters characterizing synaptic time constants and external signals that affect the neuron. Applying Lyapunov exponents and bifurcation analysis, we point out the occurrence of parameter regions with different behavior such as bursting (chaotic or periodic), spiking, and multistable phenomena. Moreover, we can describe the dynamics of the model using an analytical approximation of the one-dimensional Poincaré map extracted from the numerical simulations.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schropp, Johannes</dc:contributor> <dc:creator>Gail, Annette</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-06T08:02:55Z</dcterms:available> <dc:creator>Schropp, Johannes</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2006-10</dcterms:issued> <dcterms:title>Complex dynamics of a single neuron model</dcterms:title> </rdf:Description> </rdf:RDF>