Publikation: A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
THÖMMES, Guido, Jürgen BECKER, Michael JUNK, Ashok K. VAIKUNTAM, Dirk KEHRWALD, Axel KLAR, Konrad STEINER, Andreas WIEGMANN, 2009. A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. In: Journal of Computational Physics. 2009, 228(4), pp. 1139-1156. Available under: doi: 10.1016/j.jcp.2008.10.032BibTex
@article{Thommes2009latti-807, year={2009}, doi={10.1016/j.jcp.2008.10.032}, title={A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method}, number={4}, volume={228}, journal={Journal of Computational Physics}, pages={1139--1156}, author={Thömmes, Guido and Becker, Jürgen and Junk, Michael and Vaikuntam, Ashok K. and Kehrwald, Dirk and Klar, Axel and Steiner, Konrad and Wiegmann, Andreas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/807"> <dc:creator>Becker, Jürgen</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Junk, Michael</dc:contributor> <dc:contributor>Vaikuntam, Ashok K.</dc:contributor> <dcterms:bibliographicCitation>Publ. in: Journal of Computational Physics 228 (2009), 4, pp. 1139-1156</dcterms:bibliographicCitation> <dcterms:title>A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method</dcterms:title> <dc:contributor>Klar, Axel</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/807"/> <dc:contributor>Steiner, Konrad</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.</dcterms:abstract> <dc:creator>Kehrwald, Dirk</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:57Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Wiegmann, Andreas</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Thömmes, Guido</dc:contributor> <dc:creator>Klar, Axel</dc:creator> <dcterms:issued>2009</dcterms:issued> <dc:creator>Thömmes, Guido</dc:creator> <dc:contributor>Kehrwald, Dirk</dc:contributor> <dc:contributor>Becker, Jürgen</dc:contributor> <dc:creator>Vaikuntam, Ashok K.</dc:creator> <dc:creator>Steiner, Konrad</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:57Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Junk, Michael</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Wiegmann, Andreas</dc:creator> </rdf:Description> </rdf:RDF>