Publikation:

Convergence of lattice Boltzmann methods for Stokes flows in periodic and bounded domains

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Zhaoxia, Yang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers & Mathematics with Applications. 2008, 55(7), pp. 1481-1491. ISSN 0898-1221. eISSN 1873-7668. Available under: doi: 10.1016/j.camwa.2007.08.002

Zusammenfassung

Combining an asymptotic analysis of the lattice Boltzmann method [M. Junk, Z. Yang, Asymptotic analysis of lattice Boltzmann boundary conditions, J. Stat. Phys. 121 (2005) 3–35] with the stability estimate presented in [M. Junk, W.-A. Yong, Weighted L2 stability of the lattice Boltzmann equation, Preprint], we are able to prove some strict convergence results. The proof applies to the lattice Boltzmann method with linear collision operator both in the case of periodic domains and bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Lattice Boltzmann method, Linear collision, Convergence, Stability, Periodic boundary, Bounce back

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JUNK, Michael, Yang ZHAOXIA, 2008. Convergence of lattice Boltzmann methods for Stokes flows in periodic and bounded domains. In: Computers & Mathematics with Applications. 2008, 55(7), pp. 1481-1491. ISSN 0898-1221. eISSN 1873-7668. Available under: doi: 10.1016/j.camwa.2007.08.002
BibTex
@article{Junk2008Conve-25395,
  year={2008},
  doi={10.1016/j.camwa.2007.08.002},
  title={Convergence of lattice Boltzmann methods for Stokes flows in periodic and bounded domains},
  number={7},
  volume={55},
  issn={0898-1221},
  journal={Computers & Mathematics with Applications},
  pages={1481--1491},
  author={Junk, Michael and Zhaoxia, Yang},
  note={Nicht identisch mit: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-106454}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25395">
    <dcterms:abstract xml:lang="eng">Combining an asymptotic analysis of the lattice Boltzmann method [M. Junk, Z. Yang, Asymptotic analysis of lattice Boltzmann boundary conditions, J. Stat. Phys. 121 (2005) 3–35] with the stability estimate presented in [M. Junk, W.-A. Yong, Weighted L&lt;sup&gt;2&lt;/sup&gt; stability of the lattice Boltzmann equation, Preprint], we are able to prove some strict convergence results. The proof applies to the lattice Boltzmann method with linear collision operator both in the case of periodic domains and bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T19:34:11Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25395"/>
    <dcterms:title>Convergence of lattice Boltzmann methods for Stokes flows in periodic and bounded domains</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Computers &amp; Mathematics with Applications ; 55 (2008), 7. - S. 1481-1491</dcterms:bibliographicCitation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Zhaoxia, Yang</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Junk, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T19:34:11Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Junk, Michael</dc:contributor>
    <dcterms:issued>2008</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Zhaoxia, Yang</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Nicht identisch mit: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-106454
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen