Publikation:

An Integrated Approach to Detect Media Bias in German News Articles

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York: ACM, 2020, pp. 505-506. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398585

Zusammenfassung

Media bias may often affect individuals' opinions on reported topics. Many existing methods that aim to identify such bias forms employ individual, specialized techniques and focus only on English texts. We propose to combine the state-of-the-art in order to further improve the performance in bias identification. Our prototype consists of three analysis components to identify media bias words in German news articles. We use an IDF-based component, a component utilizing a topic-dependent bias dictionary created using word embeddings, and an extensive dictionary of German emotional terms compiled from multiple sources. Finally, we discuss two not yet implemented analysis components that use machine learning and network analysis to identify media bias. All dictionary-based analysis components are experimentally extended with the use of general word embeddings. We also show the results of a user study.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

JCDL '20, 1. Aug. 2020 - 5. Aug. 2020, China (Virtual Event)
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPINDE, Timo, Felix HAMBORG, Bela GIPP, 2020. An Integrated Approach to Detect Media Bias in German News Articles. JCDL '20. China (Virtual Event), 1. Aug. 2020 - 5. Aug. 2020. In: HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York: ACM, 2020, pp. 505-506. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398585
BibTex
@inproceedings{Spinde2020Integ-51921,
  year={2020},
  doi={10.1145/3383583.3398585},
  title={An Integrated Approach to Detect Media Bias in German News Articles},
  isbn={978-1-4503-7585-6},
  publisher={ACM},
  address={New York},
  booktitle={Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20)},
  pages={505--506},
  editor={Huang, Ruhua},
  author={Spinde, Timo and Hamborg, Felix and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51921">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dc:creator>Hamborg, Felix</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51921"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:title>An Integrated Approach to Detect Media Bias in German News Articles</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:20:25Z</dcterms:available>
    <dcterms:issued>2020</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Media bias may often affect individuals' opinions on reported topics. Many existing methods that aim to identify such bias forms employ individual, specialized techniques and focus only on English texts. We propose to combine the state-of-the-art in order to further improve the performance in bias identification. Our prototype consists of three analysis components to identify media bias words in German news articles. We use an IDF-based component, a component utilizing a topic-dependent bias dictionary created using word embeddings, and an extensive dictionary of German emotional terms compiled from multiple sources. Finally, we discuss two not yet implemented analysis components that use machine learning and network analysis to identify media bias. All dictionary-based analysis components are experimentally extended with the use of general word embeddings. We also show the results of a user study.</dcterms:abstract>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Spinde, Timo</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:20:25Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen