Publikation: Improving the Quality of Individual-Level Web Tracking : Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): MA 2244/9-1
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This article evaluates the quality of data collection in individual-level desktop web tracking used in the social sciences and shows that the existing approaches face sampling issues, validity issues due to the lack of content-level data and their disregard for the variety of devices and long-tail consumption patterns as well as transparency and privacy issues. To overcome some of these problems, the article introduces a new academic web tracking solution, WebTrack, an open-source tracking tool maintained by a major European research institution, GESIS. The design logic, the interfaces, and the backend requirements for WebTrack are discussed, followed by a detailed examination of the strengths and weaknesses of the tool. Finally, using data from 1,185 participants, the article empirically illustrates how an improvement in data collection through WebTrack leads to innovative shifts in the use of tracking data. As WebTrack allows for collecting the content people are exposed to beyond the classical news platforms, it can greatly improve the detection of politics-related information consumption in tracking data through automated content analysis compared to traditional approaches that rely on the source-level analysis.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ADAM, Silke, Mykola MAKHORTYKH, Michaela MAIER, Viktor AIGENSEER, Aleksandra URMAN, Teresa GIL LOPEZ, Clara CHRISTNER, Ernesto DE LEÓN, Roberto ULLOA, 2024. Improving the Quality of Individual-Level Web Tracking : Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution. In: Social Science Computer Review. Sage. ISSN 0894-4393. eISSN 1552-8286. Verfügbar unter: doi: 10.1177/08944393241287793BibTex
@article{Adam2024-10-16Impro-71021, year={2024}, doi={10.1177/08944393241287793}, title={Improving the Quality of Individual-Level Web Tracking : Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution}, issn={0894-4393}, journal={Social Science Computer Review}, author={Adam, Silke and Makhortykh, Mykola and Maier, Michaela and Aigenseer, Viktor and Urman, Aleksandra and Gil Lopez, Teresa and Christner, Clara and de León, Ernesto and Ulloa, Roberto} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71021"> <dc:contributor>de León, Ernesto</dc:contributor> <dc:creator>Maier, Michaela</dc:creator> <dc:creator>Christner, Clara</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71021"/> <dc:contributor>Christner, Clara</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-21T08:02:46Z</dcterms:available> <dcterms:title>Improving the Quality of Individual-Level Web Tracking : Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution</dcterms:title> <dc:contributor>Urman, Aleksandra</dc:contributor> <dc:creator>Gil Lopez, Teresa</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-21T08:02:46Z</dc:date> <dc:contributor>Makhortykh, Mykola</dc:contributor> <dc:creator>Ulloa, Roberto</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Aigenseer, Viktor</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Ulloa, Roberto</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Maier, Michaela</dc:contributor> <dc:creator>Aigenseer, Viktor</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/> <dc:creator>de León, Ernesto</dc:creator> <dc:contributor>Gil Lopez, Teresa</dc:contributor> <dcterms:issued>2024-10-16</dcterms:issued> <dc:creator>Makhortykh, Mykola</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Adam, Silke</dc:contributor> <dc:creator>Adam, Silke</dc:creator> <dc:creator>Urman, Aleksandra</dc:creator> <dcterms:abstract>This article evaluates the quality of data collection in individual-level desktop web tracking used in the social sciences and shows that the existing approaches face sampling issues, validity issues due to the lack of content-level data and their disregard for the variety of devices and long-tail consumption patterns as well as transparency and privacy issues. To overcome some of these problems, the article introduces a new academic web tracking solution, WebTrack, an open-source tracking tool maintained by a major European research institution, GESIS. The design logic, the interfaces, and the backend requirements for WebTrack are discussed, followed by a detailed examination of the strengths and weaknesses of the tool. Finally, using data from 1,185 participants, the article empirically illustrates how an improvement in data collection through WebTrack leads to innovative shifts in the use of tracking data. As WebTrack allows for collecting the content people are exposed to beyond the classical news platforms, it can greatly improve the detection of politics-related information consumption in tracking data through automated content analysis compared to traditional approaches that rely on the source-level analysis.</dcterms:abstract> </rdf:Description> </rdf:RDF>