Publikation: Fast context-aware recommendations with factorization machines
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The situation in which a choice is made is an important information for recommender systems. Context-aware rec- ommenders take this information into account to make pre- dictions. So far, the best performing method for context- aware rating prediction in terms of predictive accuracy is Multiverse Recommendation based on the Tucker tensor fac- torization model. However this method has two drawbacks: (1) its model complexity is exponential in the number of con- text variables and polynomial in the size of the factorization and (2) it only works for categorical context variables. On the other hand there is a large variety of fast but specialized recommender methods which lack the generality of context- aware methods. We propose to apply Factorization Machines (FMs) to model contextual information and to provide context-aware rating predictions. This approach results in fast context- aware recommendations because the model equation of FMs can be computed in linear time both in the number of con- text variables and the factorization size. For learning FMs, we develop an iterative optimization method that analyti- cally finds the least-square solution for one parameter given the other ones. Finally, we show empirically that our ap- proach outperforms Multiverse Recommendation in predic- tion quality and runtime.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RENDLE, Steffen, Zeno GANTNER, Christoph FREUDENTHALER, Lars SCHMIDT-THIEME, 2011. Fast context-aware recommendations with factorization machines. The 34th international ACM SIGIR conference on Research and development in Information Retrieval - SIGIR '11. Beijing, China, 24. Juli 2011 - 28. Juli 2011. In: Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR '11. New York, New York, USA: ACM Press, 2011, pp. 635-644. ISBN 978-1-4503-0757-4. Available under: doi: 10.1145/2009916.2010002BibTex
@inproceedings{Rendle2011conte-15583, year={2011}, doi={10.1145/2009916.2010002}, title={Fast context-aware recommendations with factorization machines}, isbn={978-1-4503-0757-4}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR '11}, pages={635--644}, author={Rendle, Steffen and Gantner, Zeno and Freudenthaler, Christoph and Schmidt-Thieme, Lars} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15583"> <dc:language>eng</dc:language> <dc:creator>Gantner, Zeno</dc:creator> <dc:contributor>Freudenthaler, Christoph</dc:contributor> <dc:creator>Schmidt-Thieme, Lars</dc:creator> <dc:contributor>Schmidt-Thieme, Lars</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-15T10:49:13Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Gantner, Zeno</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-15T10:49:13Z</dc:date> <dcterms:bibliographicCitation>Publ. in: SIGIR 2011 : 34th International ACM SIGIR Conference on Research and Development in Information Retrieval; July 24 - 28, 2011, Beijing, China. - New York : ACM, 2011. - pp. 635-644. - ISBN 978-1-450-30757-4</dcterms:bibliographicCitation> <dc:contributor>Rendle, Steffen</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2011</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Freudenthaler, Christoph</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15583"/> <dc:creator>Rendle, Steffen</dc:creator> <dcterms:abstract xml:lang="eng">The situation in which a choice is made is an important information for recommender systems. Context-aware rec- ommenders take this information into account to make pre- dictions. So far, the best performing method for context- aware rating prediction in terms of predictive accuracy is Multiverse Recommendation based on the Tucker tensor fac- torization model. However this method has two drawbacks: (1) its model complexity is exponential in the number of con- text variables and polynomial in the size of the factorization and (2) it only works for categorical context variables. On the other hand there is a large variety of fast but specialized recommender methods which lack the generality of context- aware methods. We propose to apply Factorization Machines (FMs) to model contextual information and to provide context-aware rating predictions. This approach results in fast context- aware recommendations because the model equation of FMs can be computed in linear time both in the number of con- text variables and the factorization size. For learning FMs, we develop an iterative optimization method that analyti- cally finds the least-square solution for one parameter given the other ones. Finally, we show empirically that our ap- proach outperforms Multiverse Recommendation in predic- tion quality and runtime.</dcterms:abstract> <dcterms:title>Fast context-aware recommendations with factorization machines</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>