Publikation:

Fast context-aware recommendations with factorization machines

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Gantner, Zeno
Schmidt-Thieme, Lars

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR '11. New York, New York, USA: ACM Press, 2011, pp. 635-644. ISBN 978-1-4503-0757-4. Available under: doi: 10.1145/2009916.2010002

Zusammenfassung

The situation in which a choice is made is an important information for recommender systems. Context-aware rec- ommenders take this information into account to make pre- dictions. So far, the best performing method for context- aware rating prediction in terms of predictive accuracy is Multiverse Recommendation based on the Tucker tensor fac- torization model. However this method has two drawbacks: (1) its model complexity is exponential in the number of con- text variables and polynomial in the size of the factorization and (2) it only works for categorical context variables. On the other hand there is a large variety of fast but specialized recommender methods which lack the generality of context- aware methods. We propose to apply Factorization Machines (FMs) to model contextual information and to provide context-aware rating predictions. This approach results in fast context- aware recommendations because the model equation of FMs can be computed in linear time both in the number of con- text variables and the factorization size. For learning FMs, we develop an iterative optimization method that analyti- cally finds the least-square solution for one parameter given the other ones. Finally, we show empirically that our ap- proach outperforms Multiverse Recommendation in predic- tion quality and runtime.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

The 34th international ACM SIGIR conference on Research and development in Information Retrieval - SIGIR '11, 24. Juli 2011 - 28. Juli 2011, Beijing, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RENDLE, Steffen, Zeno GANTNER, Christoph FREUDENTHALER, Lars SCHMIDT-THIEME, 2011. Fast context-aware recommendations with factorization machines. The 34th international ACM SIGIR conference on Research and development in Information Retrieval - SIGIR '11. Beijing, China, 24. Juli 2011 - 28. Juli 2011. In: Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR '11. New York, New York, USA: ACM Press, 2011, pp. 635-644. ISBN 978-1-4503-0757-4. Available under: doi: 10.1145/2009916.2010002
BibTex
@inproceedings{Rendle2011conte-15583,
  year={2011},
  doi={10.1145/2009916.2010002},
  title={Fast context-aware recommendations with factorization machines},
  isbn={978-1-4503-0757-4},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR '11},
  pages={635--644},
  author={Rendle, Steffen and Gantner, Zeno and Freudenthaler, Christoph and Schmidt-Thieme, Lars}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15583">
    <dc:language>eng</dc:language>
    <dc:creator>Gantner, Zeno</dc:creator>
    <dc:contributor>Freudenthaler, Christoph</dc:contributor>
    <dc:creator>Schmidt-Thieme, Lars</dc:creator>
    <dc:contributor>Schmidt-Thieme, Lars</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-15T10:49:13Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Gantner, Zeno</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-15T10:49:13Z</dc:date>
    <dcterms:bibliographicCitation>Publ. in: SIGIR 2011 : 34th International ACM SIGIR Conference on Research and Development in Information Retrieval; July 24 - 28, 2011, Beijing, China. - New York : ACM, 2011. - pp. 635-644. - ISBN 978-1-450-30757-4</dcterms:bibliographicCitation>
    <dc:contributor>Rendle, Steffen</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2011</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Freudenthaler, Christoph</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15583"/>
    <dc:creator>Rendle, Steffen</dc:creator>
    <dcterms:abstract xml:lang="eng">The situation in which a choice is made is an important information for recommender systems. Context-aware rec- ommenders take this information into account to make pre- dictions. So far, the best performing method for context- aware rating prediction in terms of predictive accuracy is Multiverse Recommendation based on the Tucker tensor fac- torization model. However this method has two drawbacks: (1) its model complexity is exponential in the number of con- text variables and polynomial in the size of the factorization and (2) it only works for categorical context variables. On the other hand there is a large variety of fast but specialized recommender methods which lack the generality of context- aware methods. We propose to apply Factorization Machines (FMs) to model contextual information and to provide context-aware rating predictions. This approach results in fast context- aware recommendations because the model equation of FMs can be computed in linear time both in the number of con- text variables and the factorization size. For learning FMs, we develop an iterative optimization method that analyti- cally finds the least-square solution for one parameter given the other ones. Finally, we show empirically that our ap- proach outperforms Multiverse Recommendation in predic- tion quality and runtime.</dcterms:abstract>
    <dcterms:title>Fast context-aware recommendations with factorization machines</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen