SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity

Lade...
Vorschaubild
Dateien
411_1.pdf
411_1.pdfGröße: 340.92 KBDownloads: 199
Datum
1999
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Time series in many areas of application often display local or global trends. Typical models that provide statistical 'explanations' of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for instance, integrated ARIMA processes. In addition, there is a fast growing literature on stationary processes with long memory which generate spurious local trends. Visual distinction between the large variety of possible models, and in particular between deterministic, stochastic and spurious trends can be very difficult. Also, for some time series, several 'trend generating' mechanisms may occur simultaneously. In this paper, a class of semiparametric fractional autoregressive models (SEMIFAR) is proposed that includes deterministic trends, difference stationarity and stationarity with short- and long-dependence. Parameters characterizing stochastic dependence and stochastic trends, including a fractional and an integer differencing parameter, can be estimated by maximum likelihood. Deterministic trends are estimated by kernel smoothing. In combination with automatic model and bandwidth selection, the proposed method allows for flexible modelling of time series and helps the data analyst to decide whether the observed process contains a stationary short- or long-memory component, a difference stationary component, and/or deterministic trend component. Data examples from various fields of application illustrate the method. Finite sample behaviour is studied in a small simulation study.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
trend, differencing, long-range dependence, anti-persistence, difference stationarity
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BERAN, Jan, 1999. SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity
BibTex
@techreport{Beran1999SEMIF-735,
  year={1999},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity},
  number={1999/16},
  author={Beran, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/735">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/735/1/411_1.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:issued>1999</dcterms:issued>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/735/1/411_1.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Time series in many areas of application often display local or global trends. Typical models that provide statistical 'explanations' of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for instance, integrated ARIMA processes. In addition, there is a fast growing literature on stationary processes with long memory which generate spurious local trends. Visual distinction between the large variety of possible models, and in particular between deterministic, stochastic and spurious trends can be very difficult. Also, for some time series, several 'trend generating' mechanisms may occur simultaneously. In this paper, a class of semiparametric fractional autoregressive models (SEMIFAR) is proposed that includes deterministic trends, difference stationarity and stationarity with short- and long-dependence. Parameters characterizing stochastic dependence and stochastic trends, including a fractional and an integer differencing parameter, can be estimated by maximum likelihood. Deterministic trends are estimated by kernel smoothing. In combination with automatic model and bandwidth selection, the proposed method allows for flexible modelling of time series and helps the data analyst to decide whether the observed process contains a stationary short- or long-memory component, a difference stationary component, and/or deterministic trend component. Data examples from various fields of application illustrate the method. Finite sample behaviour is studied in a small simulation study.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:40Z</dc:date>
    <dcterms:title>SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:40Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Beran, Jan</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/735"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen