Publikation:

Continuity argument revisited : geometry of root clustering via symmetric products

Lade...
Vorschaubild

Dateien

Violet_2-1mkk6smbq4w784.pdf
Violet_2-1mkk6smbq4w784.pdfGröße: 851.07 KBDownloads: 208

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We study the spaces of polynomials stratified into the sets of polynomial with fixed number of roots inside certain semialgebraic region Ω, on its border, and at the complement to its closure. Presented approach is a generalisation, unification and development of several classical approaches to stability problems in control theory: root clustering (D-stability) developed by R.E. Kalman, B.R. Barmish, S. Gutman et al., D-decomposition(Yu.I. Neimark, B.T. Polyak, E.N. Gryazina) and universal parameter space method(A. Fam, J. Meditch, J.Ackermann). Our approach is based on the interpretation of correspondence between roots and coefficients of a polynomial as a symmetric product morphism. We describe the topology of strata up to homotopy equivalence and, for many important cases, up to homeomorphism. Adjacencies between strata are also described. Moreover, we provide an explanation for the special position of classical stability problems: Hurwitz stability, Schur stability, hyperbolicity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Optimization and Control; Algebraic Geometry; Geometric Topology; Rings and Algebras

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VIOLET, Grey, 2016. Continuity argument revisited : geometry of root clustering via symmetric products
BibTex
@unpublished{Violet2016Conti-44918,
  year={2016},
  title={Continuity argument revisited : geometry of root clustering via symmetric products},
  author={Violet, Grey}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44918">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44918/3/Violet_2-1mkk6smbq4w784.pdf"/>
    <dcterms:abstract xml:lang="eng">We study the spaces of polynomials stratified into the sets of polynomial with fixed number of roots inside certain semialgebraic region Ω, on its border, and at the complement to its closure. Presented approach is a generalisation, unification and development of several classical approaches to stability problems in control theory: root clustering (D-stability) developed by R.E. Kalman, B.R. Barmish, S. Gutman et al., D-decomposition(Yu.I. Neimark, B.T. Polyak, E.N. Gryazina) and universal parameter space method(A. Fam, J. Meditch, J.Ackermann). Our approach is based on the interpretation of correspondence between roots and coefficients of a polynomial as a symmetric product morphism. We describe the topology of strata up to homotopy equivalence and, for many important cases, up to homeomorphism. Adjacencies between strata are also described. Moreover, we provide an explanation for the special position of classical stability problems: Hurwitz stability, Schur stability, hyperbolicity.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T14:27:55Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44918/3/Violet_2-1mkk6smbq4w784.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T14:27:55Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44918"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:title>Continuity argument revisited : geometry of root clustering via symmetric products</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Violet, Grey</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2016</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Violet, Grey</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen