Publikation: Continuity argument revisited : geometry of root clustering via symmetric products
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study the spaces of polynomials stratified into the sets of polynomial with fixed number of roots inside certain semialgebraic region Ω, on its border, and at the complement to its closure. Presented approach is a generalisation, unification and development of several classical approaches to stability problems in control theory: root clustering (D-stability) developed by R.E. Kalman, B.R. Barmish, S. Gutman et al., D-decomposition(Yu.I. Neimark, B.T. Polyak, E.N. Gryazina) and universal parameter space method(A. Fam, J. Meditch, J.Ackermann). Our approach is based on the interpretation of correspondence between roots and coefficients of a polynomial as a symmetric product morphism. We describe the topology of strata up to homotopy equivalence and, for many important cases, up to homeomorphism. Adjacencies between strata are also described. Moreover, we provide an explanation for the special position of classical stability problems: Hurwitz stability, Schur stability, hyperbolicity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VIOLET, Grey, 2016. Continuity argument revisited : geometry of root clustering via symmetric productsBibTex
@unpublished{Violet2016Conti-44918, year={2016}, title={Continuity argument revisited : geometry of root clustering via symmetric products}, author={Violet, Grey} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44918"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44918/3/Violet_2-1mkk6smbq4w784.pdf"/> <dcterms:abstract xml:lang="eng">We study the spaces of polynomials stratified into the sets of polynomial with fixed number of roots inside certain semialgebraic region Ω, on its border, and at the complement to its closure. Presented approach is a generalisation, unification and development of several classical approaches to stability problems in control theory: root clustering (D-stability) developed by R.E. Kalman, B.R. Barmish, S. Gutman et al., D-decomposition(Yu.I. Neimark, B.T. Polyak, E.N. Gryazina) and universal parameter space method(A. Fam, J. Meditch, J.Ackermann). Our approach is based on the interpretation of correspondence between roots and coefficients of a polynomial as a symmetric product morphism. We describe the topology of strata up to homotopy equivalence and, for many important cases, up to homeomorphism. Adjacencies between strata are also described. Moreover, we provide an explanation for the special position of classical stability problems: Hurwitz stability, Schur stability, hyperbolicity.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T14:27:55Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44918/3/Violet_2-1mkk6smbq4w784.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T14:27:55Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44918"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:title>Continuity argument revisited : geometry of root clustering via symmetric products</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Violet, Grey</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2016</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Violet, Grey</dc:creator> </rdf:Description> </rdf:RDF>