Across-subjects classification of stimulus modality from human MEG high frequency activity
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Single-trial analyses have the potential to uncover meaningful brain dynamics that are obscured when averaging across trials. However, low signal-to-noise ratio (SNR) can impede the use of single-trial analyses and decoding methods. In this study, we investigate the applicability of a single-trial approach to decode stimulus modality from magnetoencephalographic (MEG) high frequency activity. In order to classify the auditory versus visual presentation of words, we combine beamformer source reconstruction with the random forest classification method. To enable group level inference, the classification is embedded in an across-subjects framework. We show that single-trial gamma SNR allows for good classification performance (accuracy across subjects: 66.44%). This implies that the characteristics of high frequency activity have a high consistency across trials and subjects. The random forest classifier assigned informational value to activity in both auditory and visual cortex with high spatial specificity. Across time, gamma power was most informative during stimulus presentation. Among all frequency bands, the 75 Hz to 95 Hz band was the most informative frequency band in visual as well as in auditory areas. Especially in visual areas, a broad range of gamma frequencies (55 Hz to 125 Hz) contributed to the successful classification. Thus, we demonstrate the feasibility of single-trial approaches for decoding the stimulus modality across subjects from high frequency activity and describe the discriminative gamma activity in time, frequency, and space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WESTNER, Britta, Sarang S. DALAL, Simon HANSLMAYR, Tobias STAUDIGL, 2018. Across-subjects classification of stimulus modality from human MEG high frequency activity. In: PLoS Computational Biology. 2018, 14(3), e1005938. eISSN 1553-7358. Available under: doi: 10.1371/journal.pcbi.1005938BibTex
@article{Westner2018-03Acros-42184, year={2018}, doi={10.1371/journal.pcbi.1005938}, title={Across-subjects classification of stimulus modality from human MEG high frequency activity}, number={3}, volume={14}, journal={PLoS Computational Biology}, author={Westner, Britta and Dalal, Sarang S. and Hanslmayr, Simon and Staudigl, Tobias}, note={Article Number: e1005938} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42184"> <dc:creator>Dalal, Sarang S.</dc:creator> <dc:creator>Staudigl, Tobias</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42184"/> <dc:contributor>Hanslmayr, Simon</dc:contributor> <dc:creator>Westner, Britta</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018-03</dcterms:issued> <dc:creator>Hanslmayr, Simon</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-26T08:56:56Z</dcterms:available> <dcterms:title>Across-subjects classification of stimulus modality from human MEG high frequency activity</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42184/1/Westner_2-1mkf9r9xvegzc3.pdf"/> <dc:contributor>Westner, Britta</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Dalal, Sarang S.</dc:contributor> <dc:contributor>Staudigl, Tobias</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42184/1/Westner_2-1mkf9r9xvegzc3.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-26T08:56:56Z</dc:date> <dcterms:abstract xml:lang="eng">Single-trial analyses have the potential to uncover meaningful brain dynamics that are obscured when averaging across trials. However, low signal-to-noise ratio (SNR) can impede the use of single-trial analyses and decoding methods. In this study, we investigate the applicability of a single-trial approach to decode stimulus modality from magnetoencephalographic (MEG) high frequency activity. In order to classify the auditory versus visual presentation of words, we combine beamformer source reconstruction with the random forest classification method. To enable group level inference, the classification is embedded in an across-subjects framework. We show that single-trial gamma SNR allows for good classification performance (accuracy across subjects: 66.44%). This implies that the characteristics of high frequency activity have a high consistency across trials and subjects. The random forest classifier assigned informational value to activity in both auditory and visual cortex with high spatial specificity. Across time, gamma power was most informative during stimulus presentation. Among all frequency bands, the 75 Hz to 95 Hz band was the most informative frequency band in visual as well as in auditory areas. Especially in visual areas, a broad range of gamma frequencies (55 Hz to 125 Hz) contributed to the successful classification. Thus, we demonstrate the feasibility of single-trial approaches for decoding the stimulus modality across subjects from high frequency activity and describe the discriminative gamma activity in time, frequency, and space.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> </rdf:Description> </rdf:RDF>