Publikation:

Unifying change : Towards a framework for detecting the unexpected

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Adä, Iris
Berthold, Michael R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 2011, pp. 555-559. ISBN 978-1-4673-0005-6. Available under: doi: 10.1109/ICDMW.2011.173

Zusammenfassung

An interesting challenge in data stream mining is the detection of events where events are generally defined as anything previously unknown in the data. Therefore outliers, but also model changes or drifts, can be considered as possible events. Various methods for event detection have been proposed for different types of events. In this paper, we describe a more general framework for event detection. The framework enables generic types of time slots and streaming progress through time to be incorporated. It allows measures of similarity to included between those slots, either based directly on the data, or an abstraction, e.g. a model built on the data. We demonstrate that a large number of existing algorithms fit nicely into this framework by choosing appropriate time slots, progress mechanisms, and similarity functions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2011 IEEE International Conference on Data Mining Workshops (ICDMW), 11. Dez. 2011 - 11. Dez. 2011, Vancouver, BC, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ADÄ, Iris, Michael R. BERTHOLD, 2011. Unifying change : Towards a framework for detecting the unexpected. 2011 IEEE International Conference on Data Mining Workshops (ICDMW). Vancouver, BC, Canada, 11. Dez. 2011 - 11. Dez. 2011. In: 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 2011, pp. 555-559. ISBN 978-1-4673-0005-6. Available under: doi: 10.1109/ICDMW.2011.173
BibTex
@inproceedings{Ada2011-12Unify-19351,
  year={2011},
  doi={10.1109/ICDMW.2011.173},
  title={Unifying change : Towards a framework for detecting the unexpected},
  isbn={978-1-4673-0005-6},
  publisher={IEEE},
  booktitle={2011 IEEE 11th International Conference on Data Mining Workshops},
  pages={555--559},
  author={Adä, Iris and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19351">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Adä, Iris</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-23T09:50:58Z</dc:date>
    <dc:contributor>Adä, Iris</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19351"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-23T09:50:58Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">An interesting challenge in data stream mining is the detection of events where events are generally defined as anything previously unknown in the data. Therefore outliers, but also model changes or drifts, can be considered as possible events. Various methods for event detection have been proposed for different types of events. In this paper, we describe a more general framework for event detection. The framework enables generic types of time slots and streaming progress through time to be incorporated. It allows measures of similarity to included between those slots, either based directly on the data, or an abstraction, e.g. a model built on the data. We demonstrate that a large number of existing algorithms fit nicely into this framework by choosing appropriate time slots, progress mechanisms, and similarity functions.</dcterms:abstract>
    <dcterms:title>Unifying change : Towards a framework for detecting the unexpected</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>Publ. in: 11th IEEE International Conference on Data Mining Workshops : proceedings ; Vancouver, Canada, 11 December 2011 / Myra Spiliopoulou ... (eds.). - Los Alamitos, Calif. : IEEE Computer Society, 2011. - S. 555-559. - ISBN 978-1-4673-0005-6</dcterms:bibliographicCitation>
    <dcterms:issued>2011-12</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen