Publikation: Unifying change : Towards a framework for detecting the unexpected
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An interesting challenge in data stream mining is the detection of events where events are generally defined as anything previously unknown in the data. Therefore outliers, but also model changes or drifts, can be considered as possible events. Various methods for event detection have been proposed for different types of events. In this paper, we describe a more general framework for event detection. The framework enables generic types of time slots and streaming progress through time to be incorporated. It allows measures of similarity to included between those slots, either based directly on the data, or an abstraction, e.g. a model built on the data. We demonstrate that a large number of existing algorithms fit nicely into this framework by choosing appropriate time slots, progress mechanisms, and similarity functions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ADÄ, Iris, Michael R. BERTHOLD, 2011. Unifying change : Towards a framework for detecting the unexpected. 2011 IEEE International Conference on Data Mining Workshops (ICDMW). Vancouver, BC, Canada, 11. Dez. 2011 - 11. Dez. 2011. In: 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 2011, pp. 555-559. ISBN 978-1-4673-0005-6. Available under: doi: 10.1109/ICDMW.2011.173BibTex
@inproceedings{Ada2011-12Unify-19351, year={2011}, doi={10.1109/ICDMW.2011.173}, title={Unifying change : Towards a framework for detecting the unexpected}, isbn={978-1-4673-0005-6}, publisher={IEEE}, booktitle={2011 IEEE 11th International Conference on Data Mining Workshops}, pages={555--559}, author={Adä, Iris and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19351"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Berthold, Michael R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Adä, Iris</dc:creator> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-23T09:50:58Z</dc:date> <dc:contributor>Adä, Iris</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19351"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-23T09:50:58Z</dcterms:available> <dcterms:abstract xml:lang="eng">An interesting challenge in data stream mining is the detection of events where events are generally defined as anything previously unknown in the data. Therefore outliers, but also model changes or drifts, can be considered as possible events. Various methods for event detection have been proposed for different types of events. In this paper, we describe a more general framework for event detection. The framework enables generic types of time slots and streaming progress through time to be incorporated. It allows measures of similarity to included between those slots, either based directly on the data, or an abstraction, e.g. a model built on the data. We demonstrate that a large number of existing algorithms fit nicely into this framework by choosing appropriate time slots, progress mechanisms, and similarity functions.</dcterms:abstract> <dcterms:title>Unifying change : Towards a framework for detecting the unexpected</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>Publ. in: 11th IEEE International Conference on Data Mining Workshops : proceedings ; Vancouver, Canada, 11 December 2011 / Myra Spiliopoulou ... (eds.). - Los Alamitos, Calif. : IEEE Computer Society, 2011. - S. 555-559. - ISBN 978-1-4673-0005-6</dcterms:bibliographicCitation> <dcterms:issued>2011-12</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>