Publikation:

Infinite Time Recognizability from Random Oracles and the Recognizable Jump Operator

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

By a theorem of Sacks, if a real x is recursive relative to all elements of a set of positive Lebesgue measure, x is recursive. This statement, and the analogous statement for non-meagerness instead of positive Lebesgue measure, have been shown to carry over to many models of transfinite computations. Here, we start exploring another analogue concerning recognizability rather than computability. We introduce a notion of relativized recognizability and show that, for Infinite Time Turing Machines (ITTMs), if a real x is recognizable relative to all elements of a non-meager Borel set Y, then x is recognizable. We also show that a relativized version of this statement holds for Infinite Time Register Machines (ITRMs). This extends our earlier work where we obtained the (unrelativized) result for ITRMs. We then introduce a jump operator for recognizability, examine its set-theoretical content and show that the recognizable jumps for ITRMs and ITTMs are primitive-recursively equivalent, even though these two models are otherwise of vastly different strength. Finally, we introduce degrees of recognizability by considering the transitive closure of relativized recognizability and connect it with the recognizable jump operator to obtain a solution to Post's problem for degrees of recognizability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

infinite time machines, infinitary computability, recognizability, algorithmic randomness

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CARL, Merlin, 2015. Infinite Time Recognizability from Random Oracles and the Recognizable Jump Operator
BibTex
@unpublished{Carl2015Infin-32672,
  year={2015},
  title={Infinite Time Recognizability from Random Oracles and the Recognizable Jump Operator},
  author={Carl, Merlin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32672">
    <dcterms:title>Infinite Time Recognizability from Random Oracles and the Recognizable Jump Operator</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-21T13:23:08Z</dc:date>
    <dc:contributor>Carl, Merlin</dc:contributor>
    <dcterms:abstract xml:lang="eng">By a theorem of Sacks, if a real x is recursive relative to all elements of a set of positive Lebesgue measure, x is recursive. This statement, and the analogous statement for non-meagerness instead of positive Lebesgue measure, have been shown to carry over to many models of transfinite computations. Here, we start exploring another analogue concerning recognizability rather than computability. We introduce a notion of relativized recognizability and show that, for Infinite Time Turing Machines (ITTMs), if a real x is recognizable relative to all elements of a non-meager Borel set Y, then x is recognizable. We also show that a relativized version of this statement holds for Infinite Time Register Machines (ITRMs). This extends our earlier work where we obtained the (unrelativized) result for ITRMs. We then introduce a jump operator for recognizability, examine its set-theoretical content and show that the recognizable jumps for ITRMs and ITTMs are primitive-recursively equivalent, even though these two models are otherwise of vastly different strength. Finally, we introduce degrees of recognizability by considering the transitive closure of relativized recognizability and connect it with the recognizable jump operator to obtain a solution to Post's problem for degrees of recognizability.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-21T13:23:08Z</dcterms:available>
    <dc:creator>Carl, Merlin</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32672"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2015</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen