Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many recent energy-based methods for optical flow estimation rely on a good initialization that is typically provided by some kind of feature matching. So far, however, these initial matching approaches are rather general: They do not incorporate any additional information that could help to improve the accuracy or the robustness of the estimation. In particular, they do not exploit potential cues on the camera poses and the thereby induced rigid motion of the scene. In the present paper, we tackle this problem. To this end, we propose a novel structure-from-motion-aware PatchMatch approach that, in contrast to existing matching techniques, combines two hierarchical feature matching methods: a recent two-frame PatchMatch approach for optical flow estimation (general motion) and a specifically tailored three-frame PatchMatch approach for rigid scene reconstruction (SfM). While the motion PatchMatch serves as baseline with good accuracy, the SfM counterpart takes over at occlusions and other regions with insufficient information. Experiments with our novel SfM-aware PatchMatch approach demonstrate its usefulness. They not only show excellent results for all major benchmarks (KITTI 2012/2015, MPI Sintel), but also improvements up to 50% compared to a PatchMatch approach without structure information.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAURER, Daniel, Nico MARNIOK, Bastian GOLDLÜCKE, Andrés BRUHN, 2018. Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimation. 15th European Conference on Computer Vision, ECCV 2018. Munich, Germany, 8. Sept. 2018 - 14. Sept. 2018. In: FERRARI, Vittorio, ed. and others. Computer Vision - ECCV 2018 : 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VIII. Cham: Springer, 2018, pp. 575-592. Lecture Notes in Computer Science. 11212. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01236-6. Available under: doi: 10.1007/978-3-030-01237-3_35BibTex
@inproceedings{Maurer2018Struc-43731, year={2018}, doi={10.1007/978-3-030-01237-3_35}, title={Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimation}, number={11212}, isbn={978-3-030-01236-6}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision - ECCV 2018 : 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VIII}, pages={575--592}, editor={Ferrari, Vittorio}, author={Maurer, Daniel and Marniok, Nico and Goldlücke, Bastian and Bruhn, Andrés} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43731"> <dc:contributor>Marniok, Nico</dc:contributor> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Goldlücke, Bastian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Maurer, Daniel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-08T10:12:21Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-08T10:12:21Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43731"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Bruhn, Andrés</dc:contributor> <dc:creator>Bruhn, Andrés</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:creator>Marniok, Nico</dc:creator> <dcterms:abstract xml:lang="eng">Many recent energy-based methods for optical flow estimation rely on a good initialization that is typically provided by some kind of feature matching. So far, however, these initial matching approaches are rather general: They do not incorporate any additional information that could help to improve the accuracy or the robustness of the estimation. In particular, they do not exploit potential cues on the camera poses and the thereby induced rigid motion of the scene. In the present paper, we tackle this problem. To this end, we propose a novel structure-from-motion-aware PatchMatch approach that, in contrast to existing matching techniques, combines two hierarchical feature matching methods: a recent two-frame PatchMatch approach for optical flow estimation (general motion) and a specifically tailored three-frame PatchMatch approach for rigid scene reconstruction (SfM). While the motion PatchMatch serves as baseline with good accuracy, the SfM counterpart takes over at occlusions and other regions with insufficient information. Experiments with our novel SfM-aware PatchMatch approach demonstrate its usefulness. They not only show excellent results for all major benchmarks (KITTI 2012/2015, MPI Sintel), but also improvements up to 50% compared to a PatchMatch approach without structure information.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Maurer, Daniel</dc:contributor> <dcterms:title>Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimation</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>