Publikation:

Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This thesis is concerned with the spectral stability of small-amplitude traveling waves in two different systems: First, in a system of reaction-diffusion equations where the reaction term undergoes a pitchfork bifurcation; second, in a strictly hyperbolic system of viscous conservation laws with a characteristic family that is not genuinely nonlinear.



In either case, there exist families of small-amplitude traveling waves. The eigenvalue problem associated with the linearization at the wave is a system of ordinary differential equations depending on two parameters, the amplitude and the spectral value. Suitably scaled, the system reveals a slow-fast structure. Using methods from geometric singular perturbation theory, this will be exploited to thoroughly describe the dynamics of the eigenvalue problem in the zero-amplitude limit. I will prove that the eigenvalue problem converges to the well-understood eigenvalue problem associated with a traveling wave of a certain scalar equation.



The proofs rely on concepts from dynamical system theory, most notably on invariant manifold theory and geometric singular perturbation theory.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Traveling waves, spectral stability, geometric singular perturbation theory, Evans function

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WÄCHTLER, Johannes, 2012. Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Wachtler2012Spect-19951,
  year={2012},
  title={Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory},
  author={Wächtler, Johannes},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19951">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-03T08:49:12Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19951/2/JW-final.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Wächtler, Johannes</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19951"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19951/2/JW-final.pdf"/>
    <dcterms:abstract xml:lang="eng">This thesis is concerned with the spectral stability of small-amplitude traveling waves in two different systems: First, in a system of reaction-diffusion equations where the reaction term undergoes a pitchfork bifurcation; second, in a strictly hyperbolic system of viscous conservation laws with a characteristic family that is not genuinely nonlinear.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In either case, there exist families of small-amplitude traveling waves. The eigenvalue problem associated with the linearization at the wave is a system of ordinary differential equations depending on two parameters, the amplitude and the spectral value. Suitably scaled, the system reveals a slow-fast structure. Using methods from geometric singular perturbation theory, this will be exploited to thoroughly describe the dynamics of the eigenvalue problem in the zero-amplitude limit. I will prove that the eigenvalue problem converges to the well-understood eigenvalue problem associated with a traveling wave  of a certain scalar equation.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;The proofs rely on concepts from dynamical system theory, most notably on invariant manifold theory and geometric singular perturbation theory.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-03T08:49:12Z</dcterms:available>
    <dc:contributor>Wächtler, Johannes</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

May 30, 2012
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen