Publikation: Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This thesis is concerned with the spectral stability of small-amplitude traveling waves in two different systems: First, in a system of reaction-diffusion equations where the reaction term undergoes a pitchfork bifurcation; second, in a strictly hyperbolic system of viscous conservation laws with a characteristic family that is not genuinely nonlinear.
In either case, there exist families of small-amplitude traveling waves. The eigenvalue problem associated with the linearization at the wave is a system of ordinary differential equations depending on two parameters, the amplitude and the spectral value. Suitably scaled, the system reveals a slow-fast structure. Using methods from geometric singular perturbation theory, this will be exploited to thoroughly describe the dynamics of the eigenvalue problem in the zero-amplitude limit. I will prove that the eigenvalue problem converges to the well-understood eigenvalue problem associated with a traveling wave of a certain scalar equation.
The proofs rely on concepts from dynamical system theory, most notably on invariant manifold theory and geometric singular perturbation theory.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WÄCHTLER, Johannes, 2012. Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Wachtler2012Spect-19951, year={2012}, title={Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory}, author={Wächtler, Johannes}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19951"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-03T08:49:12Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19951/2/JW-final.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Wächtler, Johannes</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19951"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Spectral stability of small-amplitude traveling waves via geometric singular perturbation theory</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2012</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19951/2/JW-final.pdf"/> <dcterms:abstract xml:lang="eng">This thesis is concerned with the spectral stability of small-amplitude traveling waves in two different systems: First, in a system of reaction-diffusion equations where the reaction term undergoes a pitchfork bifurcation; second, in a strictly hyperbolic system of viscous conservation laws with a characteristic family that is not genuinely nonlinear.<br /><br /><br /><br />In either case, there exist families of small-amplitude traveling waves. The eigenvalue problem associated with the linearization at the wave is a system of ordinary differential equations depending on two parameters, the amplitude and the spectral value. Suitably scaled, the system reveals a slow-fast structure. Using methods from geometric singular perturbation theory, this will be exploited to thoroughly describe the dynamics of the eigenvalue problem in the zero-amplitude limit. I will prove that the eigenvalue problem converges to the well-understood eigenvalue problem associated with a traveling wave of a certain scalar equation.<br /><br /><br /><br />The proofs rely on concepts from dynamical system theory, most notably on invariant manifold theory and geometric singular perturbation theory.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-03T08:49:12Z</dcterms:available> <dc:contributor>Wächtler, Johannes</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>