Publikation: Spatial tuning of adsorption enthalpies by exploiting spectator group effects in organosilica carbon capture materials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): PO 780/23-1
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Functional gradient materials can process more complex tasks than a mixture of their homogeneous analogs. Generating such materials is difficult as it necessitates spatial control over chemical and/or structural properties. A gradient is a unique degree of freedom in hierarchical material architectures, and as such, biology has managed exploiting the full potential of graded structures. For instance, despite being present at a comparably low concentration (approaching 420 ppm in 2023), plants are capable of capturing carbon dioxide from the air. Binding occurs in the carboxysome, a complex entity characterized by pores with engineered surfaces composed of shell proteins that create a concentration gradient of CO2 towards an enzyme responsible for the first conversion step. The current paper hypothesizes that porous organosilica materials can mimic some of the features of the mentioned biological paragon. Primary amines as sites for interacting with CO2 are surrounded by spectator groups on bifunctional surfaces. It is found that the proper choice of the spectator group almost doubles the adsorption enthalpy. Above a critical density, the hydrophobic moieties create a quasi-solvent layer on the surfaces in which CO2 molecules dissolve. When the density of the spectator groups gradually changes inside a graded organosilica monolith, one obtains zones varying systematically in adsorption enthalpy. Directionality in affinity towards CO2 and controlled transport properties are realized.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EVERS, Mario, Karin HAUSER, Wolfgang G. HINZE, Nele KLINKENBERG, Yasar KRYSIAK, Daniel MOMBERS, Sebastian POLARZ, 2024. Spatial tuning of adsorption enthalpies by exploiting spectator group effects in organosilica carbon capture materials. In: Journal of Materials Chemistry A. Royal Society of Chemistry (RSC). 2024, 12(19), S. 11332-11343. ISSN 2050-7488. eISSN 2050-7496. Verfügbar unter: doi: 10.1039/d4ta01381fBibTex
@article{Evers2024Spati-69843, year={2024}, doi={10.1039/d4ta01381f}, title={Spatial tuning of adsorption enthalpies by exploiting spectator group effects in organosilica carbon capture materials}, number={19}, volume={12}, issn={2050-7488}, journal={Journal of Materials Chemistry A}, pages={11332--11343}, author={Evers, Mario and Hauser, Karin and Hinze, Wolfgang G. and Klinkenberg, Nele and Krysiak, Yasar and Mombers, Daniel and Polarz, Sebastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69843"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dcterms:issued>2024</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69843/1/Evers_2-1lvyah53mw8lu9.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-25T08:48:29Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69843"/> <dc:creator>Hinze, Wolfgang G.</dc:creator> <dc:creator>Krysiak, Yasar</dc:creator> <dc:contributor>Hinze, Wolfgang G.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Mombers, Daniel</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69843/1/Evers_2-1lvyah53mw8lu9.pdf"/> <dc:creator>Polarz, Sebastian</dc:creator> <dc:contributor>Evers, Mario</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Hauser, Karin</dc:contributor> <dcterms:title>Spatial tuning of adsorption enthalpies by exploiting spectator group effects in organosilica carbon capture materials</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-25T08:48:29Z</dc:date> <dc:rights>Attribution 3.0 Unported</dc:rights> <dc:creator>Evers, Mario</dc:creator> <dc:creator>Klinkenberg, Nele</dc:creator> <dc:contributor>Krysiak, Yasar</dc:contributor> <dc:contributor>Klinkenberg, Nele</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Mombers, Daniel</dc:creator> <dc:contributor>Polarz, Sebastian</dc:contributor> <dcterms:abstract>Functional gradient materials can process more complex tasks than a mixture of their homogeneous analogs. Generating such materials is difficult as it necessitates spatial control over chemical and/or structural properties. A gradient is a unique degree of freedom in hierarchical material architectures, and as such, biology has managed exploiting the full potential of graded structures. For instance, despite being present at a comparably low concentration (approaching 420 ppm in 2023), plants are capable of capturing carbon dioxide from the air. Binding occurs in the carboxysome, a complex entity characterized by pores with engineered surfaces composed of shell proteins that create a concentration gradient of CO<sub>2 </sub>towards an enzyme responsible for the first conversion step. The current paper hypothesizes that porous organosilica materials can mimic some of the features of the mentioned biological paragon. Primary amines as sites for interacting with CO<sub>2</sub> are surrounded by spectator groups on bifunctional surfaces. It is found that the proper choice of the spectator group almost doubles the adsorption enthalpy. Above a critical density, the hydrophobic moieties create a quasi-solvent layer on the surfaces in which CO<sub>2</sub> molecules dissolve. When the density of the spectator groups gradually changes inside a graded organosilica monolith, one obtains zones varying systematically in adsorption enthalpy. Directionality in affinity towards CO<sub>2</sub> and controlled transport properties are realized.</dcterms:abstract> <dc:creator>Hauser, Karin</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>