Publikation: Formalizing neural networks using graph transformations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
1997
Autor:innen
Fischer, Ingrid
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings of International Conference on Neural Networks (ICNN'97). IEEE, 1997, pp. 275-280. ISBN 0-7803-4122-8. Available under: doi: 10.1109/ICNN.1997.611678
Zusammenfassung
In this paper a unifying framework for the formalization of different types of neural networks and the corresponding algorithms for computation and training is presented. The used graph transformation system offers a formalism to verify properties of the networks and their algorithms. In addition the presented methodology can be used as a tool to visualize and design different types of networks along with all required algorithms. An algorithm that adapts network parameters using standard gradient descent as well as parts of a constructive, topology-changing algorithm for probabilistic neural networks are used to demonstrate the proposed formalism.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
International Conference on Neural Networks (ICNN'97), Houston, TX, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERTHOLD, Michael R., Ingrid FISCHER, 1997. Formalizing neural networks using graph transformations. International Conference on Neural Networks (ICNN'97). Houston, TX, USA. In: Proceedings of International Conference on Neural Networks (ICNN'97). IEEE, 1997, pp. 275-280. ISBN 0-7803-4122-8. Available under: doi: 10.1109/ICNN.1997.611678BibTex
@inproceedings{Berthold1997Forma-24285, year={1997}, doi={10.1109/ICNN.1997.611678}, title={Formalizing neural networks using graph transformations}, isbn={0-7803-4122-8}, publisher={IEEE}, booktitle={Proceedings of International Conference on Neural Networks (ICNN'97)}, pages={275--280}, author={Berthold, Michael R. and Fischer, Ingrid} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24285"> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-20T14:13:23Z</dcterms:available> <dcterms:abstract xml:lang="eng">In this paper a unifying framework for the formalization of different types of neural networks and the corresponding algorithms for computation and training is presented. The used graph transformation system offers a formalism to verify properties of the networks and their algorithms. In addition the presented methodology can be used as a tool to visualize and design different types of networks along with all required algorithms. An algorithm that adapts network parameters using standard gradient descent as well as parts of a constructive, topology-changing algorithm for probabilistic neural networks are used to demonstrate the proposed formalism.</dcterms:abstract> <dc:creator>Berthold, Michael R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>The 1997 IEEE International Conference on Neural Networks : June 9-12, 1997, Westin Galleria Hotel, Houston, Texas, USA; Vol. 1 / [Nicolaos B. Karayiannis, general chair]. - Piscataway, NJ : IEEE Service Center, 1997. - S. 275-280. - ISBN 0-7803-4122-8</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Formalizing neural networks using graph transformations</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24285"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-20T14:13:23Z</dc:date> <dc:contributor>Fischer, Ingrid</dc:contributor> <dc:creator>Fischer, Ingrid</dc:creator> <dcterms:issued>1997</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein