Publikation:

Pure states, nonnegative polynomials, and sums of squares

Lade...
Vorschaubild

Dateien

purestates.pdf
purestates.pdfGröße: 680.49 KBDownloads: 341

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In recent years, much work has been devoted to a systematic study of polynomial identities certifying strict or non-strict positivity of a polynomial on a basic closed semialgebraic set. The interest in such identities originates not least from their importance in polynomial optimization. The majority of the important results requires the archimedean condition, which implies that the semialgebraic set has to be compact. This paper introduces the technique of pure states into commutative algebra. We show that this technique allows an approach to most of the recent archimedean Stellensätze that is considerably easier and more conceptual than the previous proofs. In particular, we reprove and strengthen some of the most important results from the last years. In addition, we establish several such results which are entirely new. They are the first that allow the polynomial to have arbitrary, not necessarily discrete, zeros on the semialgebraic set.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

pure states, extremal homomorphisms, order units, nonnegative polynomials, sums of squares, convex cones, quadratic modules, preorderings, semirings.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BURGDORF, Sabine, Claus SCHEIDERER, Markus SCHWEIGHOFER, 2011. Pure states, nonnegative polynomials, and sums of squares
BibTex
@unpublished{Burgdorf2011state-15615,
  year={2011},
  title={Pure states, nonnegative polynomials, and sums of squares},
  author={Burgdorf, Sabine and Scheiderer, Claus and Schweighofer, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15615">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15615/2/purestates.pdf"/>
    <dcterms:title>Pure states, nonnegative polynomials, and sums of squares</dcterms:title>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T11:47:16Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15615/2/purestates.pdf"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In recent years, much work has been devoted to a systematic study of polynomial identities certifying strict or non-strict positivity of a polynomial on a basic closed semialgebraic set. The interest in such identities originates not least from their importance in polynomial optimization. The majority of the important results requires the archimedean condition, which implies that the semialgebraic set has to be compact. This paper introduces the technique of pure states into commutative algebra. We show that this technique allows an approach to most of the recent archimedean Stellensätze that is considerably easier and more conceptual than the previous proofs. In particular, we reprove and strengthen some of the most important results from the last years. In addition, we establish several such results which are entirely new. They are the first that allow the polynomial to have arbitrary, not necessarily discrete, zeros on the semialgebraic set.</dcterms:abstract>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15615"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T11:47:16Z</dc:date>
    <dc:contributor>Burgdorf, Sabine</dc:contributor>
    <dc:creator>Burgdorf, Sabine</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen