Publikation: Pure states, nonnegative polynomials, and sums of squares
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years, much work has been devoted to a systematic study of polynomial identities certifying strict or non-strict positivity of a polynomial on a basic closed semialgebraic set. The interest in such identities originates not least from their importance in polynomial optimization. The majority of the important results requires the archimedean condition, which implies that the semialgebraic set has to be compact. This paper introduces the technique of pure states into commutative algebra. We show that this technique allows an approach to most of the recent archimedean Stellensätze that is considerably easier and more conceptual than the previous proofs. In particular, we reprove and strengthen some of the most important results from the last years. In addition, we establish several such results which are entirely new. They are the first that allow the polynomial to have arbitrary, not necessarily discrete, zeros on the semialgebraic set.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BURGDORF, Sabine, Claus SCHEIDERER, Markus SCHWEIGHOFER, 2011. Pure states, nonnegative polynomials, and sums of squaresBibTex
@unpublished{Burgdorf2011state-15615, year={2011}, title={Pure states, nonnegative polynomials, and sums of squares}, author={Burgdorf, Sabine and Scheiderer, Claus and Schweighofer, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15615"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15615/2/purestates.pdf"/> <dcterms:title>Pure states, nonnegative polynomials, and sums of squares</dcterms:title> <dc:contributor>Schweighofer, Markus</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T11:47:16Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15615/2/purestates.pdf"/> <dcterms:issued>2011</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Schweighofer, Markus</dc:creator> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">In recent years, much work has been devoted to a systematic study of polynomial identities certifying strict or non-strict positivity of a polynomial on a basic closed semialgebraic set. The interest in such identities originates not least from their importance in polynomial optimization. The majority of the important results requires the archimedean condition, which implies that the semialgebraic set has to be compact. This paper introduces the technique of pure states into commutative algebra. We show that this technique allows an approach to most of the recent archimedean Stellensätze that is considerably easier and more conceptual than the previous proofs. In particular, we reprove and strengthen some of the most important results from the last years. In addition, we establish several such results which are entirely new. They are the first that allow the polynomial to have arbitrary, not necessarily discrete, zeros on the semialgebraic set.</dcterms:abstract> <dc:creator>Scheiderer, Claus</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15615"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T11:47:16Z</dc:date> <dc:contributor>Burgdorf, Sabine</dc:contributor> <dc:creator>Burgdorf, Sabine</dc:creator> </rdf:Description> </rdf:RDF>